Robotic Behavior Implementation Using Two Different Differential Evolution Variants

In Evolutionary Robotics, Bioinspired Algorithms are used to generate robotic behavior. Several researchers used classic Genetic Algorithms or adaptations of Genetic Algorithms for developing experiments in ER. Here, we use Differential Evolution as an evolutionary alternative method to automatically obtain robotic behaviors, selecting a wall-following behavior as a representative example. We used an e-puck robot and the Player-Stage simulator for the experiments. We detail the results and the advantages when using the DE variants in our application with the simulated and the real robot. In order to optimize time for evolution, and test the resultant behavior in the e-puck robot, for our experiments we employed the Player-Stage simulator.

[1]  Fernando Montes-Gonzalez,et al.  The Evolution of Signal Communication for the e-puck Robot , 2011, MICAI.

[2]  Vitaliy Feoktistov Differential Evolution: In Search of Solutions , 2006 .

[3]  Saeed Shiry Ghidary,et al.  Mobile robot global localization using differential evolution and particle swarm optimization , 2007, 2007 IEEE Congress on Evolutionary Computation.

[4]  Efrén Mezura-Montes,et al.  Differential evolution in constrained numerical optimization: An empirical study , 2010, Inf. Sci..

[5]  M. Bialko,et al.  Training of artificial neural networks using differential evolution algorithm , 2008, 2008 Conference on Human System Interactions.

[6]  Arthur C. Sanderson,et al.  Minimal representation multisensor fusion using differential evolution , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[7]  Stefano Nolfi,et al.  Evolutionary robotics , 1998, Lecture Notes in Computer Science.

[8]  Huosheng Hu,et al.  Using Genetic Programming to Evolve Robot Behaviours , 2001 .

[9]  Luis Moreno,et al.  Differential evolution approach to the grid-based localization and mapping problem , 2007, 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Inman Harvey,et al.  Explorations in Evolutionary Robotics , 1993, Adapt. Behav..

[11]  Stefano Nolfi Evolving non-trivial behavior on autonomous robots: Adaptation is more powerful than decomposition a , 1997 .

[12]  Jérôme Kodjabachian,et al.  Evolution and Development of Neural Networks Controlling Locomotion, Gradient-Following, and Obstacle-Avoidance in Artificial Insects , 1998 .

[13]  Jeffrey L. Krichmar,et al.  Evolutionary robotics: The biology, intelligence, and technology of self-organizing machines , 2001, Complex..

[14]  Takashi Gomi,et al.  Book Review: Evolutionary Robotics: the Biology, Intelligence, and Technology of Self-Organizing Machines , 2003, Genetic Programming and Evolvable Machines.

[15]  Stefano Nolfi,et al.  How to Evolve Autonomous Robots: Different Approaches in Evolutionary Robotics , 1994 .

[16]  Jean-Arcady Meyer,et al.  Evolution and development of neural controllers for locomotion, gradient-following, and obstacle-avoidance in artificial insects , 1998, IEEE Trans. Neural Networks.

[17]  Kenneth V. Price,et al.  An introduction to differential evolution , 1999 .

[18]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[19]  Martin Trefzer,et al.  Evolution and Analysis of a Robot Controller Based on a Gene Regulatory Network , 2010, ICES.

[20]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[21]  Stéphane Doncieux,et al.  Behavioral diversity measures for Evolutionary Robotics , 2010, IEEE Congress on Evolutionary Computation.

[22]  D. Trunkey In search of solutions. , 2002, Journal of Trauma.

[23]  Francesco Mondada,et al.  Evolution of homing navigation in a real mobile robot , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[24]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[25]  Francesco Mondada,et al.  Evolution of neural control structures: some experiments on mobile robots , 1995, Robotics Auton. Syst..

[26]  Stefano Nolfi,et al.  Evolving non-trivial behaviors on real robots: A garbage collecting robot , 1997, Robotics Auton. Syst..

[27]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[28]  Sanyou Zeng,et al.  Evolvable Systems: From Biology to Hardware, 7th International Conference, ICES 2007, Wuhan, China, September 21-23, 2007, Proceedings , 2007, ICES.

[29]  Edward Grant,et al.  Maze exploration behaviors using an integrated evolutionary robotics environment , 2004, Robotics Auton. Syst..

[30]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[31]  Vitaliy Feoktistov,et al.  Differential Evolution: In Search of Solutions (Springer Optimization and Its Applications) , 2006 .

[32]  Riccardo Poli,et al.  New ideas in optimization , 1999 .