Deep Regression Tracking with Shrinkage Loss Supplementary Document

f u n c t i o n [ l o s s , g r ad ] = s h r i n k a g e l o s s ( pred , l a b e l ) d i f f = pred−l a b e l ; a = 1 0 ; c = 0 . 8 ; l o s s = exp ( l a b e l ) . ∗ d i f f . ˆ 2 . / ( 1 + exp ( a . ∗ ( c−d i f f ) ) ) ; g r ad = exp ( l a b e l ) . ∗ ( 2 . ∗ d i f f . / ( exp ( a . ∗ ( c−d i f f ) ) + 1 ) + . . . a .∗ d i f f . ˆ 2 . ∗ exp ( a . ∗ ( c−d i f f ) ) . / ( exp ( a . ∗ ( c−d i f f ) ) ) + 1 ) ˆ 2 ;

[1]  Rynson W. H. Lau,et al.  CREST: Convolutional Residual Learning for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[2]  Simon Lucey,et al.  Learning Background-Aware Correlation Filters for Visual Tracking , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[3]  Michael Felsberg,et al.  ECO: Efficient Convolution Operators for Tracking , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Zhenyu He,et al.  The Visual Object Tracking VOT2016 Challenge Results , 2016, ECCV Workshops.

[5]  Bernard Ghanem,et al.  A Benchmark and Simulator for UAV Tracking , 2016, ECCV.

[6]  Michael Felsberg,et al.  Beyond Correlation Filters: Learning Continuous Convolution Operators for Visual Tracking , 2016, ECCV.

[7]  Luca Bertinetto,et al.  Fully-Convolutional Siamese Networks for Object Tracking , 2016, ECCV Workshops.

[8]  Qingming Huang,et al.  Hedged Deep Tracking , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Arnold W. M. Smeulders,et al.  UvA-DARE (Digital Academic Repository) Siamese Instance Search for Tracking , 2016 .

[10]  Silvio Savarese,et al.  Learning to Track at 100 FPS with Deep Regression Networks , 2016, ECCV.

[11]  Xiaogang Wang,et al.  Visual Tracking with Fully Convolutional Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[12]  Michael Felsberg,et al.  Learning Spatially Regularized Correlation Filters for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[13]  Ming-Hsuan Yang,et al.  Hierarchical Convolutional Features for Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[14]  Michael Felsberg,et al.  Convolutional Features for Correlation Filter Based Visual Tracking , 2015, 2015 IEEE International Conference on Computer Vision Workshop (ICCVW).

[15]  Erik Blasch,et al.  Encoding color information for visual tracking: Algorithms and benchmark , 2015, IEEE Transactions on Image Processing.

[16]  Ming-Hsuan Yang,et al.  Object Tracking Benchmark , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Zhe Chen,et al.  MUlti-Store Tracker (MUSTer): A cognitive psychology inspired approach to object tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Seunghoon Hong,et al.  Online Tracking by Learning Discriminative Saliency Map with Convolutional Neural Network , 2015, ICML.

[19]  Rui Caseiro,et al.  High-Speed Tracking with Kernelized Correlation Filters , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Stan Sclaroff,et al.  MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization , 2014, ECCV.

[21]  Jin Gao,et al.  Transfer Learning Based Visual Tracking with Gaussian Processes Regression , 2014, ECCV.

[22]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.