Large-Scale Experimental Verification of Semiactive Control through Real-Time Hybrid Simulation

Magneto-rheological (MR) fluid dampers have been identified as a particularly promising type of semiactive control device for hazard mitigation in civil engineering structures. Large-scale experimental testing is important to verify the performance of MR fluid dampers for seismic protection of civil structures. Real-time hybrid testing, where only the critical components of the system are physically tested while the rest of the structure is simulated, can provide a cost-effective means for large-scale testing of semiactive controlled structures. This paper describes the real-time hybrid simulation experimental setup for multiple large-scale MR fluid dampers and demonstrates the capability at the University of Colorado at Boulder shared-use Fast Hybrid Test facility to conduct real-time hybrid testing within the Network for Earthquake Engineering Simulation.

[1]  B.J. Bass,et al.  System Identification of a 200 kN Magneto-Rheological Fluid Damper for Structural Control in Large-Scale Smart Structures , 2007, 2007 American Control Conference.

[2]  Stephen A. Mahin,et al.  Pseudodynamic Method for Seismic Testing , 1985 .

[3]  Georges Magonette Development and application of large–scale continuous pseudo–dynamic testing techniques , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  O. J. M. Smith,et al.  A controller to overcome dead time , 1959 .

[5]  D. Gamota,et al.  Dynamic mechanical studies of electrorheological materials: Moderate frequencies , 1991 .

[6]  Richard Christenson,et al.  Semiactive Structural Control of a Nonlinear Building Model: Considering Reliability , 2005 .

[7]  Neville Hogan,et al.  Robust control of dynamically interacting systems , 1988 .

[8]  James Edward Colgate Coupled Stability of Multiport Systems—Theory and Experiments , 1994 .

[9]  Toshihiko Horiuchi,et al.  A new method for compensating actuator delay in real–time hybrid experiments , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[10]  Shuenn-Yih Chang,et al.  Explicit Pseudodynamic Algorithm with Unconditional Stability , 2002 .

[11]  John Kenneth Salisbury,et al.  A constraint-based god-object method for haptic display , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[12]  Shirley J. Dyke,et al.  PHENOMENOLOGICAL MODEL FOR MAGNETORHEOLOGICAL DAMPERS , 1997 .

[13]  Guoshan Xu,et al.  Operator‐splitting method for real‐time substructure testing , 2006 .

[14]  Stephen A. Mahin,et al.  Pseudodynamic Test Method—Current Status and Future Directions , 1989 .

[15]  David J. Wagg,et al.  Stability analysis of real‐time dynamic substructuring using delay differential equation models , 2005 .

[16]  Jian Zhao,et al.  Considerations for the development of real-time dynamic testing using servo-hydraulic actuation , 2003 .

[17]  Blake Hannaford,et al.  Stability and Performance of Haptic Displays: Theory and Experiments , 1998, Dynamic Systems and Control.

[18]  Masayoshi Nakashima,et al.  Development, potential, and limitations of real–time online (pseudo–dynamic) testing , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[19]  J. Edward Colgate,et al.  Issues in the haptic display of tool use , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[20]  Antony Darby,et al.  The development of real–time substructure testing , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Bozidar Stojadinovic,et al.  Fast Hybrid Simulation with Geographically Distributed Substructures , 2006 .

[22]  Martin S. Williams,et al.  Stability and Delay Compensation for Real-Time Substructure Testing , 2002 .

[23]  Stephen A. Mahin,et al.  Cumulative experimental errors in pseudodynamic tests , 1987 .

[24]  Martin S. Williams,et al.  Laboratory testing of structures under dynamic loads: an introductory review , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  H. Gavin Multi-Duct ER Dampers , 2001 .

[26]  Shirley J. Dyke,et al.  Role of Control-Structure Interaction in Protective System Design , 1995 .

[27]  T. T. Soong,et al.  Second Generation of Active Structural Control in Civil Engineering , 1996 .

[28]  Shirley J. Dyke,et al.  An experimental study of MR dampers for seismic protection , 1998 .

[29]  Oussama Khatib,et al.  The haptic display of complex graphical environments , 1997, SIGGRAPH.

[30]  Shirley J. Dyke,et al.  Benchmark Control Problems for Seismically Excited Nonlinear Buildings , 2004 .

[31]  Chih-Chen Chang,et al.  Neural Network Modeling of a Magnetorheological Damper , 1998 .

[32]  Abderrahmane Kheddar,et al.  A Model-Based Controller for Interactive Delayed Haptic Feedback Virtual Environments , 2003, J. Intell. Robotic Syst..

[33]  Jan Wikander,et al.  Transparency and stability analysis of a surgical teleoperator system , 2003, 11th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, 2003. HAPTICS 2003. Proceedings..

[34]  Stephen A. Mahin,et al.  Elimination of spurious higher-mode response in pseudodynamic tests , 1987 .

[35]  Toshihiko Horiuchi,et al.  Development of a Real-Time Hybrid Experimental System Using a Shaking Table : (Proposal of Experiment Concept and Feasibility Study with Rigid Secondary System) , 1999 .

[36]  A. Blakeborough,et al.  Improved control algorithm for real‐time substructure testing , 2001 .

[37]  Carol K. Shield,et al.  EFFECTIVE FORCE TESTING: A METHOD OF SEISMIC SIMULATION FOR STRUCTURAL TESTING , 1999 .

[38]  Masayoshi Nakashima,et al.  Real-time on-line test for MDOF systems , 1999 .

[39]  D. Wagg,et al.  Real-time dynamic substructuring in a coupled oscillator–pendulum system , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[40]  Shuenn-Yih Chang Improved numerical dissipation for explicit methods in pseudodynamic tests , 1997 .

[41]  Billie F. Spencer,et al.  Real-time hybrid testing using model-based delay compensation , 2008 .

[42]  James M. Ricles,et al.  Stability and accuracy analysis of outer loop dynamics in real‐time pseudodynamic testing of SDOF systems , 2007 .

[43]  T. T. Soong,et al.  Supplemental energy dissipation: state-of-the-art and state-of-the- practice , 2002 .

[44]  Billie F. Spencer,et al.  Controlling buildings: a new frontier in feedback , 1997 .

[45]  Martin S. Williams,et al.  REAL-TIME SUBSTRUCTURE TESTS USING HYDRAULIC ACTUATOR , 1999 .

[46]  Stephen A. Mahin,et al.  An unconditionally stable hybrid pseudodynamic algorithm , 1995 .