Recent Progress in Phase-Change Memory Technology

We survey progress in the PCM field over the past five years, ranging from large-scale PCM demonstrations to materials improvements for high-temperature retention and faster switching. Both materials and new cell designs that support lower-power switching are discussed, as well as higher reliability for long cycling endurance. Two paths towards higher density are discussed: through 3D integration by the combination of PCM and 3D-capable access devices, and through multiple bits per cell, by understanding and managing resistance drift caused by structural relaxation of the amorphous phase. We also briefly survey work in the nascent field of brain-inspired neuromorphic systems that use PCM to implement non-Von Neumann computing.

[1]  R. Jordan,et al.  NVM neuromorphic core with 64k-cell (256-by-256) phase change memory synaptic array with on-chip neuron circuits for continuous in-situ learning , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[2]  Y. Leblebici,et al.  Large-scale neural networks implemented with non-volatile memory as the synaptic weight element: Comparative performance analysis (accuracy, speed, and power) , 2015, 2015 IEEE International Electron Devices Meeting (IEDM).

[3]  Eric Pop,et al.  Energy-Efficient Phase-Change Memory with Graphene as a Thermal Barrier. , 2015, Nano letters.

[4]  Abu Sebastian,et al.  Accumulation-Based Computing Using Phase-Change Memories With FET Access Devices , 2015, IEEE Electron Device Letters.

[5]  O. Richard,et al.  A-VMCO: A novel forming-free, self-rectifying, analog memory cell with low-current operation, nonfilamentary switching and excellent variability , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[6]  W. C. Chien,et al.  A novel self-converging write scheme for 2-bits/cell phase change memory for Storage Class Memory (SCM) application , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[7]  Victor Yi-Qian Zhuo,et al.  Novel selector for high density non-volatile memory with ultra-low holding voltage and 107 on/off ratio , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[8]  R. Degraeve,et al.  Quantitative endurance failure model for filamentary RRAM , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[9]  Hagop Nazarian,et al.  Self-limited RRAM with ON/OFF resistance ratio amplification , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[10]  Ryutaro Yasuhara,et al.  Highly reliable TaOx ReRAM with centralized filament for 28-nm embedded application , 2015, 2015 Symposium on VLSI Technology (VLSI Technology).

[11]  Alessandro Calderoni,et al.  Challenges for high-density 16Gb ReRAM with 27nm technology , 2015, 2015 Symposium on VLSI Circuits (VLSI Circuits).

[12]  Jiale Liang,et al.  1D Selection Device Using Carbon Nanotube FETs for High-Density Cross-Point Memory Arrays , 2015, IEEE Transactions on Electron Devices.

[13]  Thomas Parnell,et al.  Phase Change Memory Reliability: A Signal Processing and Coding Perspective , 2015, IEEE Transactions on Magnetics.

[14]  Haralampos Pozidis,et al.  A collective relaxation model for resistance drift in phase change memory cells , 2015, 2015 IEEE International Reliability Physics Symposium.

[15]  Haralampos Pozidis,et al.  Phase-change memory: Feasibility of reliable multilevel-cell storage and retention at elevated temperatures , 2015, 2015 IEEE International Reliability Physics Symposium.

[16]  Songlin Feng,et al.  Phase-change properties of GeSbTe thin films deposited by plasma-enchanced atomic layer depositon , 2015, Nanoscale Research Letters.

[17]  Shuichi Murakami,et al.  Giant multiferroic effects in topological GeTe-Sb2Te3 superlattices , 2015, Science and technology of advanced materials.

[18]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[19]  M. Popescu,et al.  In-situ crystallization of GeTe\GaSb phase change memory stacked films , 2014 .

[20]  W. C. Chien,et al.  A novel inspection and annealing procedure to rejuvenate phase change memory from cycling-induced degradations for storage class memory applications , 2014, 2014 IEEE International Electron Devices Meeting.

[21]  S. Jo,et al.  3D-stackable crossbar resistive memory based on Field Assisted Superlinear Threshold (FAST) selector , 2014, 2014 IEEE International Electron Devices Meeting.

[22]  F. Pellizzer,et al.  Optimization metrics for Phase Change Memory (PCM) cell architectures , 2014, 2014 IEEE International Electron Devices Meeting.

[23]  A. Benvenuti,et al.  High Ion/Ioff ratio BJT selector for 32 cell string Resistive RAM arrays , 2014, 2014 44th European Solid State Device Research Conference (ESSDERC).

[24]  Zhe Wu,et al.  Considerations on highly scalable and easily stackable phase change memory cell array for low-cost and high-performance applications , 2014, 2014 14th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[25]  New screened plasma-enhanced atomic vapor deposition to improve trench covering ability of SbTe films , 2014, 2014 14th Annual Non-Volatile Memory Technology Symposium (NVMTS).

[26]  P. Narayanan,et al.  Access devices for 3D crosspoint memorya) , 2014 .

[27]  S. Murakami,et al.  Mirror-symmetric Magneto-optical Kerr Rotation using Visible Light in [(GeTe)2(Sb2Te3)1]n Topological Superlattices , 2014, Scientific Reports.

[28]  Daniel Krebs,et al.  Crystal growth within a phase change memory cell , 2014, Nature Communications.

[29]  H. Wong,et al.  A 1TnR array architecture using a one-dimensional selection device , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[30]  W. C. Chien,et al.  Towards the integration of both ROM and RAM functions phase change memory cells on a single die for system-on-chip (SOC) applications , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[31]  M. H. Lee,et al.  A double-density dual-mode phase change memory using a novel background storage scheme , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[32]  M. Tai,et al.  1T-1R pillar-type topological-switching random access memory (TRAM) and data retention of GeTe/Sb2Te3 super-lattice films , 2014, 2014 Symposium on VLSI Technology (VLSI-Technology): Digest of Technical Papers.

[33]  Epitaxial growth of Ge-Sb-Te films on KCl by high deposition rate pulsed laser deposition , 2014 .

[34]  Jing Li,et al.  1 Mb 0.41 µm² 2T-2R Cell Nonvolatile TCAM With Two-Bit Encoding and Clocked Self-Referenced Sensing , 2014, IEEE Journal of Solid-State Circuits.

[35]  Jin Hwan Jeong,et al.  Screened remote plasma-enhanced atomic vapor deposition of Sb–Te thin film for the improvement of trench-covering ability , 2014, Journal of Materials Science.

[36]  S. G. Bishop,et al.  Distribution of nanoscale nuclei in the amorphous dome of a phase change random access memory , 2014 .

[37]  R. Shenoy,et al.  Ga46Sb54 Material for Fast Switching and Pb-Free Soldering Reflow Process Complying Phase-Change Memory , 2014 .

[38]  S. Raoux,et al.  Unusual crystallization behavior in Ga-Sb phase change alloys , 2013 .

[39]  G. Reimbold,et al.  Trade-off between SET and data retention performance thanks to innovative materials for phase-change memory , 2013, 2013 IEEE International Electron Devices Meeting.

[40]  C. M. Lin,et al.  Atomic-level engineering of phase change material for novel fast-switching and high-endurance PCM for storage class memory application , 2013, 2013 IEEE International Electron Devices Meeting.

[41]  Unified reliability modeling of Ge-rich phase change memory for embedded applications , 2013, 2013 IEEE International Electron Devices Meeting.

[42]  A. Pirovano,et al.  Interface engineering for thermal disturb immune phase change memory technology , 2013, 2013 IEEE International Electron Devices Meeting.

[43]  T. Yamamoto,et al.  Charge-injection phase change memory with high-quality GeTe/Sb2Te3 superlattice featuring 70-μA RESET, 10-ns SET and 100M endurance cycles operations , 2013, 2013 IEEE International Electron Devices Meeting.

[44]  C. Lam,et al.  A phase change memory cell with metallic surfactant layer as a resistance drift stabilizer , 2013, 2013 IEEE International Electron Devices Meeting.

[45]  E. Varesi,et al.  Atomic migration in phase change materials , 2013, 2013 IEEE International Electron Devices Meeting.

[46]  Chung Lam,et al.  Experimental demonstration of array-level learning with phase change synaptic devices , 2013, 2013 IEEE International Electron Devices Meeting.

[47]  Elisabetta Palumbo,et al.  Overcoming Temperature Limitations in Phase Change Memories With Optimized ${\rm Ge}_{\rm x}{\rm Sb}_{\rm y}{\rm Te}_{\rm z}$ , 2013, IEEE Transactions on Electron Devices.

[48]  Nanoscale gap filling for phase change material by pulsed deposition and inductively coupled plasma etching , 2013 .

[49]  Matthias Wuttig,et al.  Measurement of crystal growth velocity in a melt-quenched phase-change material , 2013, Nature Communications.

[50]  J. Tominaga,et al.  Ultra-low switching power, crystallographic analysis, and switching mechanism for SnXTe100−X/Sb2Te3 diluted superlattice system , 2013 .

[51]  Hao Wu,et al.  A PCM-based TCAM cell using NDR , 2013, 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[52]  T. Yamamoto,et al.  Charge injection Super-lattice Phase Change Memory for low power and high density storage device applications , 2013, 2013 Symposium on VLSI Technology.

[53]  R. Degraeve,et al.  Understanding of the intrinsic characteristics and memory trade-offs of sub-μA filamentary RRAM operation , 2013, 2013 Symposium on VLSI Technology.

[54]  H. L. Lung,et al.  A scalable volume-confined phase change memory using physical vapor deposition , 2013, 2013 Symposium on VLSI Technology.

[55]  G. W. Burr,et al.  Recovery dynamics and fast (sub-50ns) read operation with Access Devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC) , 2013, 2013 Symposium on VLSI Technology.

[56]  A. Sebastian,et al.  Reliable MLC data storage and retention in phase-change memory after endurance cycling , 2013, 2013 5th IEEE International Memory Workshop.

[57]  Geoffrey W. Burr,et al.  Nanoscale electronic synapses using phase change devices , 2013, JETC.

[58]  Scott C. Lewis,et al.  A 256-Mcell Phase-Change Memory Chip Operating at $2{+}$ Bit/Cell , 2013, IEEE Transactions on Circuits and Systems I: Regular Papers.

[59]  K. Nielsch,et al.  Thermoelectric transport and Hall measurements of low defect Sb2Te3 thin films grown by atomic layer deposition , 2013 .

[60]  T. Morikawa A Low Power Phase Change Memory Using Low Thermal Conductive Material with Nano-Crystalline Structure , 2013 .

[61]  Yong Liu,et al.  Specifications of Nanoscale Devices and Circuits for Neuromorphic Computational Systems , 2013, IEEE Transactions on Electron Devices.

[62]  L. Goux,et al.  Stochastic variability of vacancy filament configuration in ultra-thin dielectric RRAM and its impact on OFF-state reliability , 2013, 2013 IEEE International Electron Devices Meeting.

[63]  On the density of states of germanium telluride , 2012 .

[64]  E. Souchier,et al.  Ti impact in C-doped phase-change memories compliant to Pb-free soldering reflow , 2012, 2012 International Electron Devices Meeting.

[65]  K. Virwani,et al.  Sub-30nm scaling and high-speed operation of fully-confined Access-Devices for 3D crosspoint memory based on mixed-ionic-electronic-conduction (MIEC) materials , 2012, 2012 International Electron Devices Meeting.

[66]  C. Chung,et al.  Active Width Modulation (AWM) for cost-effective and highly reliable PRAM , 2012, 2012 International Electron Devices Meeting.

[67]  Role of hydrogen in Sb film deposition and characterization of Sb and GexSby films deposited by cyclic plasma enhanced chemical vapor deposition using metal-organic precursors , 2012 .

[68]  Sasago Yoshitaka,et al.  Scalable 3-D vertical chain-cell-type phase-change memory with 4F2 poly-Si diodes , 2012 .

[69]  Jacques-Olivier Klein,et al.  Bioinspired networks with nanoscale memristive devices that combine the unsupervised and supervised learning approaches , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[70]  K. Gopalakrishnan,et al.  Large-scale (512kbit) integration of multilayer-ready access-devices based on mixed-ionic-electronic-conduction (MIEC) at 100% yield , 2012, 2012 Symposium on VLSI Technology (VLSIT).

[71]  Kumar Virwani,et al.  Observation and modeling of polycrystalline grain formation in Ge2Sb2Te5 , 2012 .

[72]  A. Sebastian,et al.  A Framework for Reliability Assessment in Multilevel Phase-Change Memory , 2012, 2012 4th IEEE International Memory Workshop.

[73]  Shimeng Yu,et al.  Metal–Oxide RRAM , 2012, Proceedings of the IEEE.

[74]  Stephen J. Hudgens,et al.  Invited paper: Thin-film Ovonic threshold switch: Its operation and application in modern integrated circuits , 2012, Electronic Materials Letters.

[75]  M. H. Lee,et al.  Optimization of programming current on endurance of phase change memory , 2012, Proceedings of Technical Program of 2012 VLSI Technology, System and Application.

[76]  C. Lam,et al.  Resistance drift in phase change memory , 2012, 2012 IEEE International Reliability Physics Symposium (IRPS).

[77]  Chung Lam,et al.  The impact of melting during reset operation on the reliability of phase change memory , 2012, 2012 IEEE International Reliability Physics Symposium (IRPS).

[78]  Qi Wang,et al.  A 20nm 1.8V 8Gb PRAM with 40MB/s program bandwidth , 2012, 2012 IEEE International Solid-State Circuits Conference.

[79]  H.-S. Philip Wong,et al.  Crystallization properties and their drift dependence in phase-change memory studied with a micro-thermal stage , 2011 .

[80]  H. K. Kang,et al.  PRAM cell technology and characterization in 20nm node size , 2011, 2011 International Electron Devices Meeting.

[81]  H. L. Lung,et al.  A high performance phase change memory with fast switching speed and high temperature retention by engineering the GexSbyTez phase change material , 2011, 2011 International Electron Devices Meeting.

[82]  Olivier Bichler,et al.  Phase change memory as synapse for ultra-dense neuromorphic systems: Application to complex visual pattern extraction , 2011, 2011 International Electron Devices Meeting.

[83]  A. Sebastian,et al.  Drift-resilient cell-state metric for multilevel phase-change memory , 2011, 2011 International Electron Devices Meeting.

[84]  H.-S. Philip Wong,et al.  Energy efficient programming of nanoelectronic synaptic devices for large-scale implementation of associative and temporal sequence learning , 2011, 2011 International Electron Devices Meeting.

[85]  C. Chung,et al.  Reliability perspectives for high density PRAM manufacturing , 2011, 2011 International Electron Devices Meeting.

[86]  R. Dasaka,et al.  A low power phase change memory using thermally confined TaN/TiN bottom electrode , 2011, 2011 International Electron Devices Meeting.

[87]  K. S. Choi,et al.  Highly productive PCRAM technology platform and full chip operation: Based on 4F2 (84nm pitch) cell scheme for 1 Gb and beyond , 2011, 2011 International Electron Devices Meeting.

[88]  Haralampos Pozidis,et al.  Non-resistance-based cell-state metric for phase-change memory , 2011 .

[89]  Cheng-Yuan Wen,et al.  Post-silicon calibration of analog CMOS using phase-change memory cells , 2011, 2011 Proceedings of the ESSCIRC (ESSCIRC).

[90]  Kumar Virwani,et al.  Evidence of Crystallization–Induced Segregation in the Phase Change Material Te-Rich GST , 2011 .

[91]  Chilhee Chung,et al.  Current status and future prospect of Phase Change Memory , 2011, 2011 9th IEEE International Conference on ASIC.

[92]  Kumar Virwani,et al.  Voltage polarity effects in Ge2Sb2Te5-based phase change memory devices , 2011 .

[93]  P Fons,et al.  Interfacial phase-change memory. , 2011, Nature nanotechnology.

[94]  Wei Xu,et al.  A Time-Aware Fault Tolerance Scheme to Improve Reliability of Multilevel Phase-Change Memory in the Presence of Significant Resistance Drift , 2011, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[95]  Chilhee Chung,et al.  Scalable High-Performance Phase-Change Memory Employing CVD GeBiTe , 2011, IEEE Electron Device Letters.

[96]  Daniele Ielmini,et al.  Physical origin of the resistance drift exponent in amorphous phase change materials , 2011 .

[97]  J. Paramesh,et al.  A non-volatile look-up table design using PCM (phase-change memory) cells , 2011, 2011 Symposium on VLSI Circuits - Digest of Technical Papers.

[98]  M. Breitwisch,et al.  A method to maintain phase-change memory pre-coding data retention after high temperature solder bonding process in embedded systems , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[99]  Jiale Liang,et al.  A 1.4µA reset current phase change memory cell with integrated carbon nanotube electrodes for cross-point memory application , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[100]  M. Breitwisch,et al.  Endurance and scaling trends of novel access-devices for multi-layer crosspoint-memory based on mixed-ionic-electronic-conduction (MIEC) materials , 2011, 2011 Symposium on VLSI Technology - Digest of Technical Papers.

[101]  Chung Lam,et al.  Demonstration of CAM and TCAM Using Phase Change Devices , 2011, 2011 3rd IEEE International Memory Workshop (IMW).

[102]  E. Eleftheriou,et al.  Drift-Tolerant Multilevel Phase-Change Memory , 2011, 2011 3rd IEEE International Memory Workshop (IMW).

[103]  Haralampos Pozidis,et al.  Programming algorithms for multilevel phase-change memory , 2011, 2011 IEEE International Symposium of Circuits and Systems (ISCAS).

[104]  Eric Pop,et al.  Low-Power Switching of Phase-Change Materials with Carbon Nanotube Electrodes , 2011, Science.

[105]  J. Stickney,et al.  Controlled Electrochemical Formation of GexSbyTez using Atomic Layer Deposition (ALD) , 2011 .

[106]  The first principle computer simulation and real device characteristics of superlattice phase-change memory , 2010, 2010 International Electron Devices Meeting.

[107]  C. Hagleitner,et al.  Device, circuit and system-level analysis of noise in multi-bit phase-change memory , 2010, 2010 International Electron Devices Meeting.

[108]  G. Reimbold,et al.  N-doped GeTe as performance booster for embedded Phase-Change Memories , 2010, 2010 International Electron Devices Meeting.

[109]  J. Moon,et al.  Selective Epitaxial Growth of Silicon for Vertical Diode Application , 2010 .

[110]  Dae Hong Ko,et al.  TEM Study on Volume Changes and Void Formation in Ge2Sb2Te5 Films, with Repeated Phase Changes , 2010 .

[111]  H.J. Kim,et al.  Programming disturbance and cell scaling in phase change memory: For up to 16nm based 4F2 cell , 2010, 2010 Symposium on VLSI Technology.

[112]  S.W. Nam,et al.  High performance PRAM cell scalable to sub-20nm technology with below 4F2 cell size, extendable to DRAM applications , 2010, 2010 Symposium on VLSI Technology.

[113]  Parijat Dube,et al.  Architectural design for next generation heterogeneous memory systems , 2010, 2010 IEEE International Memory Workshop.

[114]  Chang Hua Siau,et al.  A 0.13µm 64Mb multi-layered conductive metal-oxide memory , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[115]  K. Gopalakrishnan,et al.  Phase change memory technology , 2010, 1001.1164.

[116]  Vijayalakshmi Srinivasan,et al.  Enhancing lifetime and security of PCM-based Main Memory with Start-Gap Wear Leveling , 2009, 2009 42nd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).

[117]  G. Servalli,et al.  A 45nm generation Phase Change Memory technology , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[118]  P. Zuliani,et al.  Phase Change Memory technology for embedded non volatile memory applications for 90nm and beyond , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[119]  N. Righos,et al.  A stackable cross point Phase Change Memory , 2009, 2009 IEEE International Electron Devices Meeting (IEDM).

[120]  M. Kund,et al.  Nanosecond switching in GeTe phase change memory cells , 2009 .

[121]  R. Dittmann,et al.  Redox‐Based Resistive Switching Memories – Nanoionic Mechanisms, Prospects, and Challenges , 2009, Advanced materials.

[122]  Mikko Heikkilä,et al.  Atomic layer deposition of Ge2Sb2Te5 thin films , 2009 .

[123]  M. Nardone,et al.  Relaxation Oscillation in GST-Based Phase Change Memory Devices , 2009, 2009 IEEE International Memory Workshop.

[124]  D. Ielmini,et al.  Reliability Impact of Chalcogenide-Structure Relaxation in Phase-Change Memory (PCM) Cells—Part II: Physics-Based Modeling , 2009, IEEE Transactions on Electron Devices.

[125]  Guido Torelli,et al.  A Bipolar-Selected Phase Change Memory Featuring Multi-Level Cell Storage , 2009, IEEE Journal of Solid-State Circuits.

[126]  Shih-Hung Chen,et al.  Phase-change random access memory: A scalable technology , 2008, IBM J. Res. Dev..

[127]  Winfried W. Wilcke,et al.  Storage-class memory: The next storage system technology , 2008, IBM J. Res. Dev..

[128]  Y.J. Song,et al.  Two-bit cell operation in diode-switch phase change memory cells with 90nm technology , 2008, 2008 Symposium on VLSI Technology.

[129]  M. Breitwisch Phase Change Memory , 2008, 2008 International Interconnect Technology Conference.

[130]  Byung-Gil Choi,et al.  A 90 nm 1.8 V 512 Mb Diode-Switch PRAM With 266 MB/s Read Throughput , 2008, IEEE Journal of Solid-State Circuits.

[131]  B. Gleixner,et al.  Evolution of phase change memory characteristics with operating cycles: Electrical characterization and physical modeling , 2007 .

[132]  D. Ielmini,et al.  Physical interpretation, modeling and impact on phase change memory (PCM) reliability of resistance drift due to chalcogenide structural relaxation , 2007, 2007 IEEE International Electron Devices Meeting.

[133]  Y.C. Chen,et al.  Write Strategies for 2 and 4-bit Multi-Level Phase-Change Memory , 2007, 2007 IEEE International Electron Devices Meeting.

[134]  M. Wuttig,et al.  Phase-change materials for rewriteable data storage. , 2007, Nature materials.

[135]  Byung Joon Choi,et al.  Combined Atomic Layer and Chemical Vapor Deposition, and Selective Growth of Ge2Sb2Te5 Films on TiN/W Contact Plug , 2007 .

[136]  Kinam Kim,et al.  Phase-Change Behavior of Stoichiometric Ge2Sb2Te5 in Phase-Change Random Access Memory , 2007 .

[137]  M. Salinga,et al.  Glass Transition and Crystallization in Phase Change Materials , 2007 .

[138]  J. Kim,et al.  Full Integration of Highly Manufacturable 512Mb PRAM based on 90nm Technology , 2006, 2006 International Electron Devices Meeting.

[139]  Su Ahn Phase Change Memory Reliability , 2006, IIRW 2006.

[140]  Paolo Fantini,et al.  Experimental investigation of transport properties in chalcogenide materials through 1∕f noise measurements , 2006 .

[141]  Y. Sasago,et al.  Cross-point phase change memory with 4F2 cell size driven by low-contact-resistivity poly-Si diode , 2006, 2009 Symposium on VLSI Technology.

[142]  Tow Chong Chong,et al.  Phase change random access memory cell with superlattice-like structure , 2006 .

[143]  D. Ielmini,et al.  Impact of crystallization statistics on data retention for phase change memories , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[144]  R. Bez,et al.  4-Mb MOSFET-selected /spl mu/trench phase-change memory experimental chip , 2005, IEEE Journal of Solid-State Circuits.

[145]  S.O. Park,et al.  Highly scalable on-axis confined cell structure for high density PRAM beyond 256Mb , 2005, Digest of Technical Papers. 2005 Symposium on VLSI Technology, 2005..

[146]  L. V. Pieterson,et al.  Phase-change recording materials with a growth-dominated crystallization mechanism: A materials overview , 2005 .

[147]  J. González-Hernández,et al.  Structural, electric and kinetic parameters of ternary alloys of GeSbTe , 2005 .

[148]  Guido Torelli,et al.  4-Mb MOSFET-selected μtrench phase-change memory experimental chip , 2005 .

[149]  S.Y. Lee,et al.  Writing current reduction for high-density phase-change RAM , 2003, IEEE International Electron Devices Meeting 2003.

[150]  V. Weidenhof,et al.  Structural transformations of Ge2Sb2Te5 films studied by electrical resistance measurements , 2000 .

[151]  G. Bi,et al.  Synaptic Modifications in Cultured Hippocampal Neurons: Dependence on Spike Timing, Synaptic Strength, and Postsynaptic Cell Type , 1998, The Journal of Neuroscience.

[152]  N. Nobukuni,et al.  Microstructural changes in GeSbTe film during repetitious overwriting in phase‐change optical recording , 1995 .

[153]  N. Yamada,et al.  Rapid‐phase transitions of GeTe‐Sb2Te3 pseudobinary amorphous thin films for an optical disk memory , 1991 .

[154]  Noboru Yamada,et al.  Te-Ge-Sn-Au Phase Change Recording Film For Optical Disk , 1987, Optics & Photonics.

[155]  M. Chen,et al.  Compound materials for reversible, phase‐change optical data storage , 1986 .

[156]  M.R.J. Gibbs,et al.  Activation energy spectra and relaxation in amorphous materials , 1983 .

[157]  S. Ovshinsky Reversible Electrical Switching Phenomena in Disordered Structures , 1968 .

[158]  Rajeev Balasubramonian,et al.  Handling PCM Resistance Drift with Device , Circuit , Architecture , and System Solutions , .