Restriction of visual experience to a single orientation affects the organization of orientation columns in cat visual cortex

[1]  K. Albus A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat , 1975, Experimental Brain Research.

[2]  T. Wiesel,et al.  The distribution of afferents representing the right and left eyes in the cat's visual cortex , 1977, Brain Research.

[3]  K. Albus,et al.  A quantitative study of the projection area of the central and the paracentral visual field in area 17 of the cat , 1975, Experimental Brain Research.

[4]  D. W. Watkins,et al.  Receptive-field properties of neurons in binocular and monocular segments of striate cortex in cats raised with binocular lid suture. , 1978, Journal of neurophysiology.

[5]  D E Mitchell,et al.  The effect of early astigmatism on the visual resolution of gratings , 1974, The Journal of physiology.

[6]  W Singer,et al.  Cat parastriate cortex: a primary or secondary visual area. , 1975, Journal of neurophysiology.

[7]  H. B. Barlow,et al.  Visual experience and cortical development , 1975, Nature.

[8]  D. Hubel,et al.  Sequence regularity and geometry of orientation columns in the monkey striate cortex , 1974, The Journal of comparative neurology.

[9]  O. Creutzfeldt,et al.  The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat , 1977, Experimental Brain Research.

[10]  T. Powell,et al.  Patterns of degeneration after intrinsic lesions of the visual cortex (area 17) of the monkey. , 1973, Brain research.

[11]  J. Pettigrew,et al.  Alteration of Visual Cortex from Environmental Asymmetries , 1973, Nature.

[12]  M. Stryker,et al.  Quantitative study of cortical orientation selectivity in visually inexperienced kitten. , 1976, Journal of neurophysiology.

[13]  L. Palmer,et al.  The retinotopic organization of lateral suprasylvian visual areas in the cat , 1978, The Journal of comparative neurology.

[14]  D. Mitchell,et al.  Monocular astigmatism effects on kitten visual cortex development , 1977, Nature.

[15]  J. P. Rauschecker,et al.  Orientation-dependent Changes in Response Properties of Neurons in the Kitten’s Visual Cortex , 1979 .

[16]  D. Hubel,et al.  RECEPTIVE FIELDS OF CELLS IN STRIATE CORTEX OF VERY YOUNG, VISUALLY INEXPERIENCED KITTENS. , 1963, Journal of neurophysiology.

[17]  C. Blakemore,et al.  Innate and environmental factors in the development of the kitten's visual cortex. , 1975, The Journal of physiology.

[18]  M. Reivich,et al.  THE [14C]DEOXYGLUCOSE METHOD FOR THE MEASUREMENT OF LOCAL CEREBRAL GLUCOSE UTILIZATION: THEORY, PROCEDURE, AND NORMAL VALUES IN THE CONSCIOUS AND ANESTHETIZED ALBINO RAT 1 , 1977, Journal of neurochemistry.

[19]  D. N. Spinelli,et al.  Modification of the distribution of receptive field orientation in cats by selective visual exposure during development , 1971, Experimental Brain Research.

[20]  G. Henry,et al.  Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey , 1979, The Journal of comparative neurology.

[21]  W. Singer,et al.  The effects of early visual experience on the cat's visual cortex and their possible explanation by Hebb synapses. , 1981, The Journal of physiology.

[22]  M. Imbert,et al.  Visual cortical cells: their developmental properties in normal and dark reared kittens. , 1976, The Journal of physiology.

[23]  D. Hubel,et al.  Orientation columns in macaque monkey visual cortex demonstrated by the 2-deoxyglucose autoradiographic technique , 1977, Nature.

[24]  D. Hubel,et al.  Anatomical demonstration of orientation columns in macaque monkey , 1978, The Journal of comparative neurology.

[25]  Y. Frégnac,et al.  Early development of visual cortical cells in normal and dark‐reared kittens: relationship between orientation selectivity and ocular dominance. , 1978, The Journal of physiology.

[26]  H. Hirsch,et al.  Physiological consequences for the cat's visual cortex of effectively restricting early visual experience with oriented contours. , 1978, Journal of neurophysiology.

[27]  P. O. Bishop,et al.  Orientation specificity of cells in cat striate cortex. , 1974, Journal of neurophysiology.

[28]  W. Singer,et al.  Changes in the circuitry of the kitten visual cortex are gated by postsynaptic activity , 1979, Nature.

[29]  U. Mitzdorf,et al.  Prominent excitatory pathways in the cat visual cortex (A 17 and A 18): A current source density analysis of electrically evoked potentials , 1978, Experimental Brain Research.

[30]  W. Singer,et al.  Modification of orientation and direction selectivity of cortical cells in kittens with monocular vision , 1976, Brain Research.

[31]  J. Szentágothai The ‘module-concept’ in cerebral cortex architecture , 1975, Brain Research.

[32]  W. Singer,et al.  Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. , 1975, Journal of neurophysiology.

[33]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[34]  R D Freeman,et al.  Meridional amblyopia: evidence for modification of the human visual system by early visual experience. , 1973, Vision research.

[35]  O. Creutzfeldt,et al.  Vertical organization in the visual cortex (area 17) in the cat , 2004, Experimental Brain Research.

[36]  L. Palmer,et al.  Retinotopic organization of areas 18 and 19 in the cat , 1979, The Journal of comparative neurology.

[37]  H. Hirsch,et al.  Cortical effect of selective visual experience: degeneration or reorganization? , 1973, Brain research.

[38]  L N Thibos,et al.  Visual evoked responses in humans with abnormal visual experience. , 1975, The Journal of physiology.

[39]  D. Mitchell,et al.  A physiological and behavioural study in cats of the effect of early visual experience with contours of a single orientation. , 1977, The Journal of physiology.

[40]  P. Coleman,et al.  Demonstration of orientation columns with [14C]2-deoxyglucose in a cat reared in a striped environment , 1979, Brain Research.

[41]  Michel Imbert,et al.  Receptive field characteristics and plastic properties of visual cortical cells in kittens reared with or without visual experience , 2004, Experimental Brain Research.

[42]  W. Singer,et al.  Modification of direction selectivity of neurons in the visual cortex of kittens , 1975, Brain Research.

[43]  W. Singer,et al.  Functional amblyopia in kittens with unilateral exotropia , 1980, Experimental Brain Research.

[44]  J. Szentágothai Synaptology of the Visual Cortex , 1973 .

[45]  D. Hubel,et al.  Ordered arrangement of orientation columns in monkeys lacking visual experience , 1974, The Journal of comparative neurology.

[46]  D. Hubel,et al.  Uniformity of monkey striate cortex: A parallel relationship between field size, scatter, and magnification factor , 1974, The Journal of comparative neurology.

[47]  D. Hubel,et al.  Shape and arrangement of columns in cat's striate cortex , 1963, The Journal of physiology.

[48]  L. Thibos,et al.  Contrast sensitivity in humans with abnormal visual experience. , 1975, The Journal of physiology.

[49]  D. Hubel,et al.  Plasticity of ocular dominance columns in monkey striate cortex. , 1977, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[50]  K. Albus,et al.  14C-Deoxyglucose mapping of orientation subunits in the cats visual cortical areas , 2004, Experimental Brain Research.

[51]  D. N. Spinelli,et al.  Visual Experience Modifies Distribution of Horizontally and Vertically Oriented Receptive Fields in Cats , 1970, Science.

[52]  W. C. Hall,et al.  Deoxyglucose mapping of the orientation column system in the striate cortex of the tree shrew, Tupaia glis , 1978, Brain Research.

[53]  G. F. Cooper,et al.  Development of the Brain depends on the Visual Environment , 1970, Nature.

[54]  K. Toyama,et al.  An intracellular study of neuronal organization in the visual cortex , 2004, Experimental Brain Research.

[55]  W. Singer,et al.  Receptive-field properties and neuronal connectivity in striate and parastriate cortex of contour-deprived cats. , 1976, Journal of neurophysiology.

[56]  D H HUBEL,et al.  RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. , 1965, Journal of neurophysiology.