Continuity properties of the lower spectral radius

© 2014 London Mathematical Society.The lower spectral radius, or joint spectral subradius, of a set of real d \times d matrices is defined to be the smallest possible exponential growth rate of long products of matrices drawn from that set. The lower spectral radius arises naturally in connection with a number of topics including combinatorics on words, the stability of linear inclusions in control theory, and the study of random Cantor sets. In this article, we apply some ideas originating in the study of dominated splittings of linear cocycles over a dynamical system to characterize the points of continuity of the lower spectral radius on the set of all compact sets of invertible d \times d matrices. As an application, we exhibit open sets of pairs of 2 \times 2 matrices within which the analogue of the Lagarias-Wang finiteness property for the lower spectral radius fails on a residual set, and discuss some implications of this result for the computation of the lower spectral radius.

[1]  Yang Wang,et al.  Bounded semigroups of matrices , 1992 .

[2]  K. Palmer,et al.  Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations , 1982 .

[3]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[4]  Yu Huang,et al.  Extremal ergodic measures and the finiteness property of matrix semigroups , 2011, 1107.0123.

[5]  Paul H. Siegel,et al.  On codes that avoid specified differences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[6]  V. Araújo Random Dynamical Systems , 2006, math/0608162.

[7]  Vincent D. Blondel,et al.  Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..

[8]  J. Mairesse,et al.  Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .

[10]  J. Bochi,et al.  The Lyapunov exponents of generic volume-preserving and symplectic maps , 2005 .

[11]  Thierry Bousch,et al.  Le poisson n'a pas d'arêtes , 2000 .

[12]  Thierry Bousch La condition de Walters , 2001 .

[13]  J. Bochi,et al.  The entropy of Lyapunov-optimizing measures of some matrix cocycles , 2013, 1312.6718.

[14]  Christian Bonatti,et al.  Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective , 2004 .

[15]  Matteo Turilli,et al.  Dynamics of Control , 2007, First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE '07).

[16]  M. A. Krasnoselʹskii,et al.  Positive Linear Systems, the Method of Positive Operators , 1989 .

[17]  J. Lagarias,et al.  The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .

[18]  Vincent D. Blondel,et al.  An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..

[19]  M. Zennaro,et al.  Finiteness property of pairs of 2× 2 sign-matrices via real extremal polytope norms , 2010 .

[20]  V. Blondel,et al.  On the number of a -power-free binary words for 2 < a = 7 / 3 , 2009 .

[21]  Turlough Neary,et al.  Undecidability in Binary Tag Systems and the Post Correspondence Problem for Five Pairs of Words , 2013, STACS.

[22]  Nikita Sidorov,et al.  Number of representations related to a linear recurrent basis , 1999 .

[23]  Joseph P. S. Kung,et al.  Gian-Carlo Rota on Analysis and Probability , 2002 .

[24]  Nikita Sidorov,et al.  On a Devil's staircase associated to the joint spectral radii of a family of pairs of matrices , 2011, ArXiv.

[25]  F. Wirth,et al.  On the structure of the set of extremal norms of a linear inclusion , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[26]  R. Jungers The Joint Spectral Radius: Theory and Applications , 2009 .

[27]  M. Maesumi Optimal norms and the computation of joint spectral radius of matrices , 2008 .

[28]  Uniform exponential growth for some SL(2, R) matrix products , 2010 .

[29]  V. Protasov,et al.  On the regularity of de Rham curves , 2004 .

[30]  K. Elworthy RANDOM DYNAMICAL SYSTEMS (Springer Monographs in Mathematics) , 2000 .

[31]  Fabian R. Wirth,et al.  Extremal norms for positive linear inclusions , 2012, 1306.3814.

[32]  Fabian R. Wirth,et al.  Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..

[33]  Vincent D. Blondel,et al.  On the finiteness property for rational matrices , 2007 .

[34]  M. Paterson Unsolvability in 3 × 3 Matrices , 1970 .

[35]  A. Cicone A note on the Joint Spectral Radius , 2015, 1502.01506.

[36]  John N. Tsitsiklis,et al.  When is a Pair of Matrices Mortal? , 1997, Inf. Process. Lett..

[37]  Nicola Guglielmi,et al.  Exact Computation of Joint Spectral Characteristics of Linear Operators , 2011, Found. Comput. Math..

[38]  Dichotomies between uniform hyperbolicity and zero Lyapunov exponents for SL(2, ℝ) cocycles , 2005, math/0510232.

[39]  J. Bochi,et al.  Uniformly Hyperbolic Finite-Valued SL(2,R)-Cocycles , 2008, 0808.0133.

[40]  Vincent D. Blondel,et al.  Joint Spectral Characteristics of Matrices: A Conic Programming Approach , 2010, SIAM J. Matrix Anal. Appl..

[41]  Vincent D. Blondel,et al.  On the Complexity of Computing the Capacity of Codes That Avoid Forbidden Difference Patterns , 2006, IEEE Transactions on Information Theory.

[42]  Gilbert Strang,et al.  CONTINUITY OF THE JOINT SPECTRAL RADIUS: APPLICATION TO WAVELETS , 1995 .

[43]  Nikita Sidorov,et al.  An explicit counterexample to the Lagarias-Wang finiteness conjecture , 2010, ArXiv.

[44]  V. Protasov Asymptotic behaviour of the partition function , 2000 .

[45]  Victor Kozyakin,et al.  An explicit Lipschitz constant for the joint spectral radius , 2009, 0909.3170.

[46]  D. Damanik,et al.  Opening gaps in the spectrum of strictly ergodic , 2009, 0903.2281.

[47]  Vincent D. Blondel,et al.  On the number of alpha-power-free binary words for 2alpha<=7/3 , 2009, Theor. Comput. Sci..

[48]  Nicola Guglielmi,et al.  Finding Extremal Complex Polytope Norms for Families of Real Matrices , 2009, SIAM J. Matrix Anal. Appl..

[49]  Fabian R. Wirth,et al.  The generalized spectral radius and extremal norms , 2002 .

[50]  L. Gurvits Stability of discrete linear inclusion , 1995 .

[51]  G. Strang Wavelet transforms versus Fourier transforms , 1993, math/9304214.

[52]  Raphael M. Jungers,et al.  On asymptotic properties of matrix semigroups with an invariant cone , 2012, 1201.3212.

[53]  I. Morris Mather sets for sequences of matrices and applications to the study of joint spectral radii , 2011, 1109.4615.

[54]  J. Bochi Generic linear cocycles over a minimal base , 2013, 1302.5542.

[55]  G. Rota,et al.  A note on the joint spectral radius , 1960 .

[56]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[57]  Some characterizations of domination , 2009 .