Continuity properties of the lower spectral radius
暂无分享,去创建一个
[1] Yang Wang,et al. Bounded semigroups of matrices , 1992 .
[2] K. Palmer,et al. Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations , 1982 .
[3] John N. Tsitsiklis,et al. The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..
[4] Yu Huang,et al. Extremal ergodic measures and the finiteness property of matrix semigroups , 2011, 1107.0123.
[5] Paul H. Siegel,et al. On codes that avoid specified differences , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).
[6] V. Araújo. Random Dynamical Systems , 2006, math/0608162.
[7] Vincent D. Blondel,et al. Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..
[8] J. Mairesse,et al. Asymptotic height optimization for topical IFS, Tetris heaps, and the finiteness conjecture , 2001 .
[10] J. Bochi,et al. The Lyapunov exponents of generic volume-preserving and symplectic maps , 2005 .
[11] Thierry Bousch,et al. Le poisson n'a pas d'arêtes , 2000 .
[12] Thierry Bousch. La condition de Walters , 2001 .
[13] J. Bochi,et al. The entropy of Lyapunov-optimizing measures of some matrix cocycles , 2013, 1312.6718.
[14] Christian Bonatti,et al. Dynamics Beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective , 2004 .
[15] Matteo Turilli,et al. Dynamics of Control , 2007, First Joint IEEE/IFIP Symposium on Theoretical Aspects of Software Engineering (TASE '07).
[16] M. A. Krasnoselʹskii,et al. Positive Linear Systems, the Method of Positive Operators , 1989 .
[17] J. Lagarias,et al. The finiteness conjecture for the generalized spectral radius of a set of matrices , 1995 .
[18] Vincent D. Blondel,et al. An Elementary Counterexample to the Finiteness Conjecture , 2002, SIAM J. Matrix Anal. Appl..
[19] M. Zennaro,et al. Finiteness property of pairs of 2× 2 sign-matrices via real extremal polytope norms , 2010 .
[20] V. Blondel,et al. On the number of a -power-free binary words for 2 < a = 7 / 3 , 2009 .
[21] Turlough Neary,et al. Undecidability in Binary Tag Systems and the Post Correspondence Problem for Five Pairs of Words , 2013, STACS.
[22] Nikita Sidorov,et al. Number of representations related to a linear recurrent basis , 1999 .
[23] Joseph P. S. Kung,et al. Gian-Carlo Rota on Analysis and Probability , 2002 .
[24] Nikita Sidorov,et al. On a Devil's staircase associated to the joint spectral radii of a family of pairs of matrices , 2011, ArXiv.
[25] F. Wirth,et al. On the structure of the set of extremal norms of a linear inclusion , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.
[26] R. Jungers. The Joint Spectral Radius: Theory and Applications , 2009 .
[27] M. Maesumi. Optimal norms and the computation of joint spectral radius of matrices , 2008 .
[28] Uniform exponential growth for some SL(2, R) matrix products , 2010 .
[29] V. Protasov,et al. On the regularity of de Rham curves , 2004 .
[30] K. Elworthy. RANDOM DYNAMICAL SYSTEMS (Springer Monographs in Mathematics) , 2000 .
[31] Fabian R. Wirth,et al. Extremal norms for positive linear inclusions , 2012, 1306.3814.
[32] Fabian R. Wirth,et al. Complex Polytope Extremality Results for Families of Matrices , 2005, SIAM J. Matrix Anal. Appl..
[33] Vincent D. Blondel,et al. On the finiteness property for rational matrices , 2007 .
[34] M. Paterson. Unsolvability in 3 × 3 Matrices , 1970 .
[35] A. Cicone. A note on the Joint Spectral Radius , 2015, 1502.01506.
[36] John N. Tsitsiklis,et al. When is a Pair of Matrices Mortal? , 1997, Inf. Process. Lett..
[37] Nicola Guglielmi,et al. Exact Computation of Joint Spectral Characteristics of Linear Operators , 2011, Found. Comput. Math..
[38] Dichotomies between uniform hyperbolicity and zero Lyapunov exponents for SL(2, ℝ) cocycles , 2005, math/0510232.
[39] J. Bochi,et al. Uniformly Hyperbolic Finite-Valued SL(2,R)-Cocycles , 2008, 0808.0133.
[40] Vincent D. Blondel,et al. Joint Spectral Characteristics of Matrices: A Conic Programming Approach , 2010, SIAM J. Matrix Anal. Appl..
[41] Vincent D. Blondel,et al. On the Complexity of Computing the Capacity of Codes That Avoid Forbidden Difference Patterns , 2006, IEEE Transactions on Information Theory.
[42] Gilbert Strang,et al. CONTINUITY OF THE JOINT SPECTRAL RADIUS: APPLICATION TO WAVELETS , 1995 .
[43] Nikita Sidorov,et al. An explicit counterexample to the Lagarias-Wang finiteness conjecture , 2010, ArXiv.
[44] V. Protasov. Asymptotic behaviour of the partition function , 2000 .
[45] Victor Kozyakin,et al. An explicit Lipschitz constant for the joint spectral radius , 2009, 0909.3170.
[46] D. Damanik,et al. Opening gaps in the spectrum of strictly ergodic , 2009, 0903.2281.
[47] Vincent D. Blondel,et al. On the number of alpha-power-free binary words for 2alpha<=7/3 , 2009, Theor. Comput. Sci..
[48] Nicola Guglielmi,et al. Finding Extremal Complex Polytope Norms for Families of Real Matrices , 2009, SIAM J. Matrix Anal. Appl..
[49] Fabian R. Wirth,et al. The generalized spectral radius and extremal norms , 2002 .
[50] L. Gurvits. Stability of discrete linear inclusion , 1995 .
[51] G. Strang. Wavelet transforms versus Fourier transforms , 1993, math/9304214.
[52] Raphael M. Jungers,et al. On asymptotic properties of matrix semigroups with an invariant cone , 2012, 1201.3212.
[53] I. Morris. Mather sets for sequences of matrices and applications to the study of joint spectral radii , 2011, 1109.4615.
[54] J. Bochi. Generic linear cocycles over a minimal base , 2013, 1302.5542.
[55] G. Rota,et al. A note on the joint spectral radius , 1960 .
[56] I. Daubechies,et al. Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .
[57] Some characterizations of domination , 2009 .