A patchy approximation of explicit model predictive control

The explicit solution of multi-parametric optimisation problems (MPOP) has been used to construct an off-line solution to relatively small- and medium-sized constrained control problems. The control design principles are based on receding horizon optimisation and generally use linear prediction models for the system dynamics. In this context, it can be shown that the optimal control law is a piecewise linear (PWL) state feedback defined over polytopic cells of the state space. However, as the complexity of the related optimisation problems increases, the memory footprint and implementation of such explicit optimal solution may be burdensome for the available hardware, principally due to the high number of polytopic cells in the state-space partition. In this article we provide a solution to this problem by proposing a patchy PWL feedback control law, which intend to approximate the optimal control law. The construction is based on the linear interpolation of the exact solution at the vertices of a feasible set and the solution of an unconstrained linear quadratic regulator (LQR) problem. With a hybrid patchy control implementation, we show that closed-loop stability is preserved in the presence of additive measurement noise despite the existence of discontinuities at the switch between the overlapping regions in the state-space partition.

[1]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[2]  M. Morari,et al.  Efficient evaluation of piecewise control laws defined over a large number of polyhedra , 2007, 2007 European Control Conference (ECC).

[3]  G. Ziegler Lectures on Polytopes , 1994 .

[4]  John L. Casti Introduction to the Mathematical Theory of Control Processes, Volume I: Linear Equations and Quadratic Criteria, Volume II: Nonlinear Processes , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[6]  Tuhin Das,et al.  Robust Control of Solid Oxide Fuel Cell Ultracapacitor Hybrid System , 2012, IEEE Transactions on Control Systems Technology.

[7]  Tor Arne Johansen,et al.  Flexible Piecewise Function Evaluation Methods Based on Truncated Binary Search Trees and Lattice Representation in Explicit MPC , 2012, IEEE Transactions on Control Systems Technology.

[8]  G. Goodwin,et al.  Global analytical model predictive control with input constraints , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[9]  Tor Arne Johansen,et al.  Approximate explicit constrained linear model predictive control via orthogonal search tree , 2003, IEEE Trans. Autom. Control..

[10]  J. Maciejowski,et al.  Equality Set Projection: A new algorithm for the projection of polytopes in halfspace representation , 2004 .

[11]  Graham C. Goodwin,et al.  Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.

[12]  Alberto Bemporad,et al.  An algorithm for multi-parametric quadratic programming and explicit MPC solutions , 2003, Autom..

[13]  Franco Blanchini,et al.  Set-theoretic methods in control , 2007 .

[14]  Morten Hovd,et al.  Patchy approximate explicit model predictive control , 2010, ICCAS 2010.

[15]  Tingshu Hu,et al.  Null controllable region of LTI discrete-time systems with input saturation , 2002, Autom..

[16]  Didier Dumur,et al.  Avoiding constraints redundancy in predictive control optimization routines , 2005, IEEE Transactions on Automatic Control.

[17]  Rafal Goebel,et al.  Smooth patchy control Lyapunov functions , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[18]  Tor Arne Johansen,et al.  Using hash tables to manage the time-storage complexity in a point location problem: Application to explicit model predictive control , 2011, Autom..

[19]  George B. Dantzig,et al.  Fourier-Motzkin Elimination and Its Dual , 1973, J. Comb. Theory, Ser. A.

[20]  Per-olof Gutman,et al.  Admissible sets and feedback control for discrete-time linear dynamical systems with bounded controls and states , 1984, The 23rd IEEE Conference on Decision and Control.

[21]  Morten Hovd,et al.  On feasible sets for MPC and their approximations , 2011, Autom..

[22]  Alberto Bemporad,et al.  An Algorithm for Approximate Multiparametric Convex Programming , 2006, Comput. Optim. Appl..

[23]  D. Dumur,et al.  On the continuity and complexity of control laws based on multiparametric linear programs , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[24]  Morten Hovd,et al.  Piecewise quadratic Lyapunov functions for stability verification of approximate explicit MPC , 2010 .

[25]  Graham C. Goodwin,et al.  Constrained Control and Estimation , 2005 .

[26]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[27]  Manfred Morari,et al.  Real-Time Suboptimal Model Predictive Control Using a Combination of Explicit MPC and Online Optimization , 2011, IEEE Trans. Autom. Control..

[28]  Lorenzo Fagiano,et al.  Set Membership approximation theory for fast implementation of Model Predictive Control laws , 2009, Autom..

[29]  Tor Arne Johansen,et al.  Explicit sub-optimal linear quadratic regulation with state and input constraints , 2002, Autom..

[30]  A. Bemporad,et al.  Suboptimal Explicit Receding Horizon Control via Approximate Multiparametric Quadratic Programming , 2003 .

[31]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[32]  Alberto Bemporad,et al.  A survey on explicit model predictive control , 2009 .

[33]  Richard Bellman,et al.  Introduction to the mathematical theory of control processes , 1967 .

[34]  Yang Wang,et al.  Efficient point location via subdivision walking with application to explicit MPC , 2007, 2007 European Control Conference (ECC).

[35]  Tor Arne Johansen,et al.  Combining Truncated Binary Search Tree and Direct Search for Flexible Piecewise Function Evaluation for Explicit MPC in Embedded Microcontrollers , 2011 .

[36]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[37]  Morten Hovd,et al.  Approximate explicit linear MPC via Delaunay tessellation , 2009, 2009 European Control Conference (ECC).

[38]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[39]  P. Grieder,et al.  Using interpolation to improve efficiency of multiparametric predictive control , 2005, Autom..