Strain effects on oxygen vacancy formation energy in perovskites

[1]  W. Chueh,et al.  Equilibrium oxygen storage capacity of ultrathin CeO2-δ depends non-monotonically on large biaxial strain , 2017, Nature Communications.

[2]  Henry H. Wu,et al.  The MAterials Simulation Toolkit (MAST) for atomistic modeling of defects and diffusion , 2016, 1610.00594.

[3]  B. Sheldon,et al.  Coupling of strain, stress, and oxygen non-stoichiometry in thin film Pr0.1Ce0.9O2-δ. , 2016, Nanoscale.

[4]  Udo Schwingenschlögl,et al.  Formation and Migration of Oxygen Vacancies in SrCoO3 and Their Effect on Oxygen Evolution Reactions , 2016 .

[5]  H. L. Wang,et al.  Strain-induced modification in microstructure and electrical properties of polycrystalline LaNiO3−δ films , 2016 .

[6]  Tam Mayeshiba,et al.  Correction: Strain effects on oxygen migration in perovskites. , 2016, Physical chemistry chemical physics : PCCP.

[7]  Qinghua Zhang,et al.  The Origin of Oxygen Vacancies Controlling La2/3Sr1/3MnO3 Electronic and Magnetic Properties , 2016 .

[8]  Shiming Zhou,et al.  Strain effect on the transport properties of epitaxial PrNiO3 thin films grown by polymer-assisted deposition , 2016 .

[9]  S. Bishop,et al.  Operando reduction of elastic modulus in (Pr, Ce)O2−δ thin films , 2016 .

[10]  Hyoungjeen Jeen,et al.  Strain Control of Oxygen Vacancies in Epitaxial Strontium Cobaltite Films , 2016, 1602.04280.

[11]  T. Kitamura,et al.  Mechanical control of magnetism in oxygen deficient perovskite SrTiO3. , 2015, Physical chemistry chemical physics : PCCP.

[12]  S. Bishop,et al.  Understanding chemical expansion in perovskite-structured oxides. , 2015, Physical chemistry chemical physics : PCCP.

[13]  D. Morgan,et al.  Strain effects on oxygen migration in perovskites. , 2015, Physical chemistry chemical physics : PCCP.

[14]  B. Liu,et al.  Strain-Induced Phase and Oxygen-Vacancy Stability in Ionic Interfaces from First-Principles Calculations , 2014 .

[15]  P. Mustarelli,et al.  Improving Oxygen Transport in Perovskite-Type LaGaO3 Solid Electrolyte through Strain , 2014 .

[16]  L. Gan,et al.  Anisotropic O vacancy formation and diffusion in LaMnO3 , 2014 .

[17]  S. Bishop,et al.  Tailoring chemical expansion by controlling charge localization: in situ X-ray diffraction and dilatometric study of (La,Sr)(Ga,Ni)O3−δ perovskite , 2014 .

[18]  B. Yildiz “Stretching” the energy landscape of oxides—Effects on electrocatalysis and diffusion , 2014 .

[19]  K. Yoon,et al.  Lattice-strain effect on oxygen vacancy formation in gadolinium-doped ceria , 2014, Journal of Electroceramics.

[20]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[21]  H. Kurata,et al.  Atomic level observation of octahedral distortions at the perovskite oxide heterointerface , 2013, Scientific Reports.

[22]  Jun Hee Lee,et al.  Strong coupling of Jahn-Teller distortion to oxygen-octahedron rotation and functional properties in epitaxially strained orthorhombic LaMnO3 , 2013, 1307.3347.

[23]  J. Cao,et al.  Strain effects on formation and migration energies of oxygen vacancy in perovskite ferroelectrics: A first-principles study , 2013 .

[24]  T. Grande,et al.  Strain-controlled oxygen vacancy formation and ordering in CaMnO3 , 2013, 1303.4749.

[25]  A. Chroneos,et al.  Effect of strain on the oxygen diffusion in yttria and gadolinia co-doped ceria , 2013 .

[26]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[27]  J. Kitchin,et al.  Effects of strain, d-band filling, and oxidation state on the surface electronic structure and reactivity of 3d perovskite surfaces. , 2012, The Journal of chemical physics.

[28]  B. Yildiz,et al.  Mechanism for enhanced oxygen reduction kinetics at the (La,Sr)CoO3−δ/(La,Sr)2CoO4+δ hetero-interface , 2012 .

[29]  Bilge Yildiz,et al.  Understanding Chemical Expansion in Non‐Stoichiometric Oxides: Ceria and Zirconia Case Studies , 2012 .

[30]  M. Fiebig,et al.  Incipient ferroelectricity in 2.3% tensile-strained CaMnO3 films , 2012, 1205.1623.

[31]  B. Yildiz,et al.  Enhanced one dimensional mobility of oxygen on strained LaCoO3(001) surface , 2011 .

[32]  J. Kitchin,et al.  Effects of strain, d-band filling, and oxidation state on the bulk electronic structure of cubic 3d perovskites. , 2011, The Journal of chemical physics.

[33]  B. Yildiz,et al.  New Insights into the Strain Coupling to Surface Chemistry, Electronic Structure, and Reactivity of La0.7Sr0.3MnO3 , 2011 .

[34]  Ming Liu,et al.  Epitaxial Strain-Induced Chemical Ordering in La0.5Sr0.5CoO3−δ Films on SrTiO3 , 2011 .

[35]  E. Wachsman,et al.  Thermo‐Chemical Expansion in Strontium‐Doped Lanthanum Cobalt Iron Oxide , 2010 .

[36]  J. Rondinelli,et al.  Substrate coherency driven octahedral rotations in perovskite oxide films , 2010, 1005.4835.

[37]  P. J. Ryan,et al.  Quantifying octahedral rotations in strained perovskite oxide films , 2010, 1002.1317.

[38]  Dane Morgan,et al.  Ab initio energetics of LaBO3(001) (B=Mn, Fe, Co, and Ni) for solid oxide fuel cell cathodes , 2009 .

[39]  J. Janek,et al.  Elastic strain at interfaces and its influence on ionic conductivity in nanoscaled solid electrolyte thin films--theoretical considerations and experimental studies. , 2009, Physical chemistry chemical physics : PCCP.

[40]  C. Fennie,et al.  Strain-induced ferroelectricity in orthorhombic CaTiO3 from first principles , 2009, 0904.2118.

[41]  Manfred Martin,et al.  An atomistic simulation study of oxygen-vacancy migration in perovskite electrolytes based on LaGaO3 , 2009 .

[42]  J. Rondinelli,et al.  Structural effects on the spin-state transition in epitaxially strained LaCoO3 films , 2008, 0808.2075.

[43]  Jürgen Hafner,et al.  Ab‐initio simulations of materials using VASP: Density‐functional theory and beyond , 2008, J. Comput. Chem..

[44]  D. Brett,et al.  Intermediate temperature solid oxide fuel cells. , 2008, Chemical Society reviews.

[45]  Fujio Izumi,et al.  VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .

[46]  E. Wachsman,et al.  The effect of oxygen vacancy concentration on the elastic modulus of fluorite-structured oxides , 2007 .

[47]  Xiangyang Huang,et al.  Structural, electronic, and magnetic properties of SrRuO3 under epitaxial strain , 2006, cond-mat/0605606.

[48]  Gerbrand Ceder,et al.  Oxidation energies of transition metal oxides within the GGA+U framework , 2006 .

[49]  K. Kawamura,et al.  Lattice expansion upon reduction of perovskite-type LaMnO3 with oxygen-deficit nonstoichiometry , 2003 .

[50]  Philippe Knauth,et al.  Solid‐State Ionics: Roots, Status, and Future Prospects , 2002 .

[51]  P M Woodward,et al.  Prediction of the crystal structures of perovskites using the software program SPuDS. , 2001, Acta crystallographica. Section B, Structural science.

[52]  M. Alouani,et al.  Implementation of the projector augmented-wave LDA+U method: Application to the electronic structure of NiO , 2000, cond-mat/0003182.

[53]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[54]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[55]  P. Woodward Octahedral Tilting in Perovskites. II. Structure Stabilizing Forces , 1997 .

[56]  A. Lichtenstein,et al.  First-principles calculations of electronic structure and spectra of strongly correlated systems: the LDA+U method , 1997 .

[57]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[58]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[59]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[60]  J. Mizusaki,et al.  Nonstoichiometry and defect structure of the perovskite-type oxides La1−xSrxFeO3−° , 1985 .

[61]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[62]  A. Boresi,et al.  Elasticity in engineering mechanics , 1974 .

[63]  A. M. Glazer,et al.  The classification of tilted octahedra in perovskites , 1972 .

[64]  J. Goodenough Localized versus collective d electrons and Néel temperatures in perovskite and perovskite-pelated structures , 1967 .