From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis

[1]  Joseph H. Montoya,et al.  Improving Oxygen Electrochemistry through Nanoscopic Confinement , 2015 .

[2]  Thomas Bligaard,et al.  Assessing the reliability of calculated catalytic ammonia synthesis rates , 2014, Science.

[3]  Jan Rossmeisl,et al.  Beyond the volcano limitations in electrocatalysis--oxygen evolution reaction. , 2014, Physical chemistry chemical physics : PCCP.

[4]  D. Bruce,et al.  Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols. , 2014, Angewandte Chemie.

[5]  Thomas Bligaard,et al.  Exploring the limits: A low-pressure, low-temperature Haber–Bosch process , 2014 .

[6]  Andrew J. Medford,et al.  High Pressure CO Hydrogenation Over Bimetallic Pt–Co Catalysts , 2014, Catalysis Letters.

[7]  L. Pettersson,et al.  A Molecular Perspective on the d-Band Model: Synergy Between Experiment and Theory , 2014, Topics in Catalysis.

[8]  Andrew J. Medford,et al.  Activity and Selectivity Trends in Synthesis Gas Conversion to Higher Alcohols , 2014, Topics in Catalysis.

[9]  A. Vojvodić,et al.  Electronic Structure Effects in Transition Metal Surface Chemistry , 2014, Topics in Catalysis.

[10]  P. Sabatier La Catalyse en chimie organique , 2013 .

[11]  M. Che Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis? , 2013 .

[12]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[13]  Jens K Nørskov,et al.  Understanding Trends in the Electrocatalytic Activity of Metals and Enzymes for CO2 Reduction to CO. , 2013, The journal of physical chemistry letters.

[14]  Anker Degn Jensen,et al.  CO hydrogenation to methanol on Cu–Ni catalysts: Theory and experiment , 2012 .

[15]  Thomas Bligaard,et al.  Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation , 2012 .

[16]  J. Nørskov,et al.  CatApp: a web application for surface chemistry and heterogeneous catalysis. , 2012, Angewandte Chemie.

[17]  Matthew Neurock,et al.  Reactivity theory of transition-metal surfaces: a Brønsted-Evans-Polanyi linear activation energy-free-energy analysis. , 2010, Chemical reviews.

[18]  A S Bondarenko,et al.  Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. , 2009, Nature chemistry.

[19]  Robert J. Davis,et al.  Fe-promotion of supported Rh catalysts for direct conversion of syngas to ethanol , 2009 .

[20]  Junliang Zhang,et al.  Bimetallic and Ternary Alloys for Improved Oxygen Reduction Catalysis , 2007 .

[21]  Ture R. Munter,et al.  Scaling properties of adsorption energies for hydrogen-containing molecules on transition-metal surfaces. , 2007, Physical review letters.

[22]  A. Hellman,et al.  Structural, energetic, and vibrational properties of NO(x) adsorption on Ag(n), n = 1-8. , 2007, The journal of physical chemistry. A.

[23]  J. Nørskov,et al.  Computational high-throughput screening of electrocatalytic materials for hydrogen evolution , 2006, Nature materials.

[24]  Thomas Bligaard,et al.  Toward computational screening in heterogeneous catalysis: Pareto-optimal methanation catalysts , 2006 .

[25]  Matthew Neurock,et al.  First principles reaction modeling of the electrochemical interface: Consideration and calculation of a tunable surface potential from atomic and electronic structure , 2006 .

[26]  J. Nørskov,et al.  The electronic structure effect in heterogeneous catalysis , 2005 .

[27]  Jacob Bonde,et al.  Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. , 2005, Journal of the American Chemical Society.

[28]  H. Jónsson,et al.  Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode , 2004 .

[29]  B. Trout,et al.  Chemistry of Sulfur Oxides on Transition Metals. III. Oxidation of SO2 and Self-Diffusion of O, SO2, and SO3 on Pt(111) , 2004 .

[30]  J. G. Chen,et al.  Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. , 2004, The Journal of chemical physics.

[31]  Manos Mavrikakis,et al.  Why Au and Cu Are More Selective Than Pt for Preferential Oxidation of CO at Low Temperature , 2004 .

[32]  Robert Schlögl,et al.  Catalytic synthesis of ammonia-a "never-ending story"? , 2003, Angewandte Chemie.

[33]  M. Koper,et al.  Quantum-chemical calculations of CO and OH interacting with bimetallic surfaces , 2002 .

[34]  M. V. Ganduglia-Pirovano,et al.  Atomistic description of oxide formation on metal surfaces: the example of ruthenium , 2002 .

[35]  J. Nørskov,et al.  Electronic factors in catalysis: the volcano curve and the effect of promotion in catalytic ammonia synthesis , 2001 .

[36]  B S Clausen,et al.  Catalyst design by interpolation in the periodic table: bimetallic ammonia synthesis catalysts. , 2001, Journal of the American Chemical Society.

[37]  Søren Dahl,et al.  The Brønsted-Evans-Polanyi relation and the volcano plot for ammonia synthesis over transition metal catalysts , 2001 .

[38]  A. Michaelides,et al.  A density functional theory study of CH2 and H adsorption on Ni(111) , 2000 .

[39]  H. Metiu,et al.  The effect of strain on the adsorption of CO on Pd(100) , 2000, cond-mat/0002394.

[40]  Matthias Scheffler,et al.  TRENDS IN THE CHEMICAL REACTIVITY OF SURFACES STUDIED BY AB INITIO QUANTUM-DYNAMICS CALCULATIONS , 1999 .

[41]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[42]  M. Fernández-García,et al.  Interaction of CO and NO with PdCu(111) Surfaces , 1998 .

[43]  G. Kresse,et al.  REACTION PATH FOR THE DISSOCIATIVE ADSORPTION OF HYDROGEN ON THE (100) SURFACES OF FACE-CENTERED-CUBIC TRANSITION METALS , 1997 .

[44]  Sautet,et al.  Density-functional periodic study of the adsorption of hydrogen on a palladium (111) surface. , 1996, Physical review. B, Condensed matter.

[45]  J. Nørskov,et al.  Why gold is the noblest of all the metals , 1995, Nature.

[46]  E. Baerends,et al.  DISSOCIATION OF H2 ON CU(100) : DYNAMICS ON A NEW TWO-DIMENSIONAL POTENTIAL ENERGY SURFACE , 1995 .

[47]  Jacobsen,et al.  Dissociation path for H2 on Al(110). , 1992, Physical review letters.

[48]  G. Ertl Surface Science and Catalysis—Studies on the Mechanism of Ammonia Synthesis: The P. H. Emmett Award Address , 1980 .

[49]  G. Bond Principles of catalysis , 1972 .

[50]  W. Sachtler,et al.  Interaction of Formic Acid Vapour with Tungsten , 1960 .

[51]  R. Bell,et al.  The Theory of Reactions Involving Proton Transfers , 1936 .

[52]  M. Polanyi,et al.  Further considerations on the thermodynamics of chemical equilibria and reaction rates , 1936 .

[53]  L. Hammett,et al.  The Relation between the Rates of Some Acid Catalyzed Reactions and the Acidity Function, H0 , 1934 .