Estimating attitude and wind velocity using biomimetic sensors on a microrobotic bee

This paper discusses recent developments in sensors for the Harvard RoboBee. The RoboBee is a sub-100 mg flapping-wing micro-aerial vehicle that is able to lift its own weight under external power, but, like flying insects, is unstable in flight without active feedback. We discuss design and characterization of two low-latency insect-inspired sensors for flight control: an antenna to sense airspeed and light-sensing ocelli to estimate attitude angle relative to a luminous sky. We demonstrate accurate wind velocity estimation in a wind tunnel despite the effect of nearby flapping wings.We also demonstrate pitch angle control using the ocelli on a wire-mounted RoboBee that is free to rotate about its pitch axis. These flight-weight sensors are essential first steps toward autonomous upright stability and controlled forward motions.

[1]  Henry Won,et al.  Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle , 2012 .

[2]  M. Dickinson,et al.  Performance trade-offs in the flight initiation of Drosophila , 2008, Journal of Experimental Biology.

[3]  Z. J. Wang,et al.  Flapping wing flight can save aerodynamic power compared to steady flight. , 2009, Physical review letters.

[4]  Khalil Najafi,et al.  Hair-based sensors for micro-autonomous systems , 2012, Defense, Security, and Sensing.

[5]  Robert J. Wood,et al.  Open-loop roll, pitch and yaw torques for a robotic bee , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  B. Webb,et al.  Fabrication and characterization of a wind sensor for integration with a neuron circuit , 2007 .

[7]  Robert J. Wood,et al.  A hovering flapping-wing microrobot with altitude control and passive upright stability , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  Robert J. Wood,et al.  Altitude feedback control of a flapping-wing microrobot using an on-board biologically inspired optical flow sensor , 2012, 2012 IEEE International Conference on Robotics and Automation.

[9]  R. Hengstenberg Multisensory control in insect oculomotor systems. , 1993, Reviews of oculomotor research.

[10]  Robert J. Wood,et al.  Progress on "Pico" Air Vehicles , 2011, ISRR.

[11]  Robert J. Wood,et al.  Microrobotics using composite materials: the micromechanical flying insect thorax , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[12]  Kevin C. Galloway,et al.  First controlled vertical flight of a biologically inspired microrobot , 2011, Bioinspiration & biomimetics.

[13]  R. Hengstenberg,et al.  Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response , 1993, Journal of Comparative Physiology A.

[14]  Robert J. Wood,et al.  Design, fabrication, and modeling of the split actuator microrobotic bee , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Peter Schlegel,et al.  Die Schwingungen der Antenne und ihre Bedeutung für die Flugsteuerung bei Calliphora erythrocephala , 1970, Zeitschrift für vergleichende Physiologie.

[16]  Dario Floreano,et al.  Vision-based control of near-obstacle flight , 2009, Auton. Robots.

[17]  Robert J. Wood,et al.  The First Takeoff of a Biologically Inspired At-Scale Robotic Insect , 2008, IEEE Transactions on Robotics.

[18]  T. Collett,et al.  Chasing behaviour of houseflies (Fannia canicularis) , 1974, Journal of comparative physiology.

[19]  Andrew E. Johnson,et al.  Computer Vision on Mars , 2007, International Journal of Computer Vision.

[20]  Robert J. Wood,et al.  Monolithic fabrication of millimeter-scale machines , 2012 .

[21]  Robert J. Wood,et al.  A review of actuation and power electronics options for flapping-wing robotic insects , 2008, 2008 IEEE International Conference on Robotics and Automation.

[22]  Michael H Dickinson,et al.  Active and Passive Antennal Movements during Visually Guided Steering in Flying Drosophila , 2011, The Journal of Neuroscience.

[23]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[24]  William S. N. Trimmer,et al.  Microrobots and micromechanical systems , 1989 .

[25]  P. Mason Atmospheric boundary layer flows: Their structure and measurement , 1995 .

[26]  F. A. Miles,et al.  Visual Motion and Its Role in the Stabilization of Gaze , 1992 .

[27]  H. Krapp,et al.  Sensory Systems and Flight Stability: What do Insects Measure and Why? , 2007 .

[28]  Robert J. Wood,et al.  Halteres for the micromechanical flying insect , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[29]  S. Shankar Sastry,et al.  Flapping flight for biomimetic robotic insects: part I-system modeling , 2006, IEEE Transactions on Robotics.

[30]  Robert J. Wood,et al.  Pitch-angle feedback control of a Biologically Inspired flapping-wing microrobot , 2011, 2011 IEEE International Conference on Robotics and Biomimetics.

[31]  M. Gewecke,et al.  Mechanoreception in Arthropoda: the chain from stimulus to behavioral pattern. , 1965, Cold Spring Harbor symposia on quantitative biology.

[32]  Robert J. Wood,et al.  Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).