A Micro Aerosol Sensor for the Measurement of Airborne Ultrafine Particles

Particle number concentration and particle size are the two key parameters used to characterize exposure to airborne nanoparticles or ultrafine particles that have attracted the most attention. This paper proposes a simple micro aerosol sensor for detecting the number concentration and particle size of ultrafine particles with diameters from 50 to 253 nm based on electrical diffusion charging. The sensor is composed of a micro channel and a couple of planar electrodes printed on two circuit boards assembled in parallel, which thus integrate charging, precipitating and measurement elements into one chip, the overall size of which is 98 × 38 × 25 mm3. The experiment results demonstrate that the sensor is useful for measuring monodisperse aerosol particles with number concentrations from 300 to 2.5 × 104 /cm3 and particle sizes from 50 to 253 nm. The aerosol sensor has a simple structure and small size, which is favorable for use in handheld devices.

[1]  Thomas A. J. Kuhlbusch,et al.  Comparison of instruments for particle number size distribution measurements in air quality monitoring , 2014 .

[2]  W. Kreyling,et al.  TRANSLOCATION OF ULTRAFINE INSOLUBLE IRIDIUM PARTICLES FROM LUNG EPITHELIUM TO EXTRAPULMONARY ORGANS IS SIZE DEPENDENT BUT VERY LOW , 2002, Journal of toxicology and environmental health. Part A.

[3]  Kikuo Okuyama,et al.  Unipolar and bipolar diffusion charging of ultrafine aerosol particles , 1984 .

[4]  Michel P. Bonin,et al.  Laser-based techniques for particle-size measurement: A review of sizing methods and their industrial applications , 1996 .

[5]  Heinz Burtscher,et al.  Field Measurement of Particle Size and Number Concentration with the Diffusion Size Classifier (Disc) , 2008 .

[6]  H. S. Wolff,et al.  iRun: Horizontal and Vertical Shape of a Region-Based Graph Compression , 2022, Sensors.

[7]  Nathalie Tufenkji,et al.  Real-time monitoring of airborne cat allergen using a QCM-based immunosensor , 2014 .

[8]  A. Maynard,et al.  Airborne Nanostructured Particles and Occupational Health , 2005 .

[9]  Peter H. McMurry,et al.  The History of Condensation Nucleus Counters , 2000 .

[10]  J. Marra,et al.  Nanoparticle monitoring for exposure assessment , 2009, IEEE Nanotechnology Magazine.

[11]  Amanda Hayes,et al.  Nanoparticles: a review of particle toxicology following inhalation exposure , 2012, Inhalation toxicology.

[12]  M. L. Laucks,et al.  Aerosol Technology Properties, Behavior, and Measurement of Airborne Particles , 2000 .

[13]  Walter John,et al.  Size Distribution Characteristics of Aerosols , 2011 .

[14]  B. Weiss,et al.  Association of particulate air pollution and acute mortality: involvement of ultrafine particles? , 1995, Inhalation toxicology.

[15]  Richard C. Flagan,et al.  Scanning Electrical Mobility Spectrometer , 1989 .

[16]  Naomi Zimmerman,et al.  Comparison of three nanoparticle sizing instruments: The influence of particle morphology , 2014 .

[17]  Leonidas Ntziachristos,et al.  Diffusion broadening of DMA transfer functions. Numerical validation of Stolzenburg model , 2007 .

[18]  Heinz Burtscher,et al.  Design, Calibration, and Field Performance of a Miniature Diffusion Size Classifier , 2011 .

[19]  G. Oberdörster,et al.  Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles , 2005, Environmental health perspectives.

[20]  G. Oberdorster,et al.  Significance of particle parameters in the evaluation of exposure-dose-response relationships of inhaled particles. , 1996, Inhalation toxicology.

[21]  Jongbaeg Kim,et al.  Development and performance test of a ZnO nanowire charger for measurements of nano-aerosol particles , 2015 .

[22]  Kenneth K. Kuo,et al.  Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena , 1996 .

[23]  David B. Kittelson,et al.  Characterization of Aerosol Surface Instruments in Transition Regime , 2005 .

[24]  O Witschger,et al.  A laboratory study of the performance of the handheld diffusion size classifier (DiSCmini) for various aerosols in the 15-400 nm range. , 2015, Environmental science. Processes & impacts.

[25]  D. Taylor,et al.  Human Respiratory Tract Model for Radiological Protection , 1996 .

[26]  Chuin-Shan Chen,et al.  A Miniature System for Separating Aerosol Particles and Measuring Mass Concentrations , 2010, Sensors.

[27]  A. Waag,et al.  Handheld personal airborne nanoparticle detector based on microelectromechanical silicon resonant cantilever , 2015 .

[28]  Matthias Voetz,et al.  Monitor for detecting and assessing exposure to airborne nanoparticles , 2010 .