Metaheuristic and Multiobjective Approaches for Space Allocation

This thesis presents an investigation on the application of metaheuristic techniques to tackle the space allocation problem in academic institutions. This is a combinatorial optimisation problem which refers to the distribution of the available room space among a set of entities (staff, research students, computer rooms, etc.) in such a way that the space is utilised as efficiently as possible and the additional constraints are satisfied as much as possible. The literature on the application of optimisation techniques to approach the problem mentioned above is scarce. This thesis provides a description and formulation of the problem. It also proposes and compares a range of heuristics for the initialisation of solutions and for neighbourhood exploration. Four well-known metaheuristics (iterative improvement, simulated annealing, tabu search and genetic algorithms) are adapted and tuned for their application to the problem investigated here. The performance of these techniques is assessed and benchmark results are obtained. Also, hybrid approaches are designed that produce sets of high quality and diverse solutions in much shorter time than those required by space administrators who construct solutions manually. The hybrid approaches are also adapted to tackle the space allocation problem from a two-objective perspective. It is also revealed that the use of aggregating functions or relaxed dominance to evaluate solutions in Pareto optimisation, can be more beneficial than the standard dominance relation to enhance the performance of some multiobjective optimisers in some problem domains. A range of single-solution metaheuristics are extended to create hybrid evolutionary approaches based on the scheme of cooperative local search. This scheme promotes the cooperation of a population of local searchers by means of mechanisms to share the information gained during the search. This thesis also reports the best results known so far for a set of test instances of the space allocation problem in academic institutions. This thesis pioneers the application of metaheuristics to solve the space allocation problem. The major contributions are: provides a formulation of the problem together with tests data sets, reports the best known results for these test instances, investigates the multiobjective nature of the problem and proposes a new form of hybridising metaheuristics.

[1]  Philip N. Strenski,et al.  Analysis of finite length annealing schedules , 2005, Algorithmica.

[2]  Peter I. Cowling,et al.  A Memetic Approach to the Nurse Rostering Problem , 2001, Applied Intelligence.

[3]  Andrea Schaerf,et al.  A Survey of Automated Timetabling , 1999, Artificial Intelligence Review.

[4]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[5]  Christian Blum,et al.  Metaheuristics in combinatorial optimization: Overview and conceptual comparison , 2003, CSUR.

[6]  Pierre Hansen,et al.  Variable Neighbourhood Search , 2003 .

[7]  Pablo Moscato,et al.  A Gentle Introduction to Memetic Algorithms , 2003, Handbook of Metaheuristics.

[8]  Rajeev Kumar,et al.  Improved Sampling of the Pareto-Front in Multiobjective Genetic Optimizations by Steady-State Evolution: A Pareto Converging Genetic Algorithm , 2002, Evolutionary Computation.

[9]  El-Ghazali Talbi,et al.  A Taxonomy of Hybrid Metaheuristics , 2002, J. Heuristics.

[10]  Marco Laumanns,et al.  Combining Convergence and Diversity in Evolutionary Multiobjective Optimization , 2002, Evolutionary Computation.

[11]  Jean-Charles Billaut,et al.  Multicriteria scheduling , 2005, Eur. J. Oper. Res..

[12]  Hisao Ishibuchi,et al.  Balance Between Genetic Search And Local Search In Hybrid Evolutionary Multi-criterion Optimization Algorithms , 2002, GECCO.

[13]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[14]  Hisao Ishibuchi,et al.  Selection of initial solutions for local search in multiobjective genetic local search , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[15]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[16]  E.K. Burke,et al.  A multi criteria meta-heuristic approach to nurse rostering , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[17]  Mehrdad Tamiz,et al.  Multi-objective meta-heuristics: An overview of the current state-of-the-art , 2002, Eur. J. Oper. Res..

[18]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[19]  Joshua D. Knowles Local-search and hybrid evolutionary algorithms for Pareto optimization , 2002 .

[20]  Marco Laumanns,et al.  SPEA2: Improving the Strength Pareto Evolutionary Algorithm For Multiobjective Optimization , 2002 .

[21]  Jin-Kao Hao,et al.  A “Logic-Constrained” Knapsack Formulation and a Tabu Algorithm for the Daily Photograph Scheduling of an Earth Observation Satellite , 2001, Comput. Optim. Appl..

[22]  Marcus Randall,et al.  A General Meta-Heuristic Based Solver for Combinatorial Optimisation Problems , 2001, Comput. Optim. Appl..

[23]  Theodor J. Stewart,et al.  Multiple criteria decision analysis - an integrated approach , 2001 .

[24]  Kenneth A. De Jong,et al.  Measurement of Population Diversity , 2001, Artificial Evolution.

[25]  Andrew J. Higgins,et al.  A dynamic tabu search for large-scale generalised assignment problems , 2001, Comput. Oper. Res..

[26]  Peter J. Bentley,et al.  CREATIVE EVOLUTIONARY SYSTEMS , 2001 .

[27]  Juan A. Díaz,et al.  A Tabu search heuristic for the generalized assignment problem , 2001, Eur. J. Oper. Res..

[28]  Barry McCollum A Computer Based System for Space Allocation Optimisation , 2001 .

[29]  H. Kita,et al.  Failure of Pareto-based MOEAs: does non-dominated really mean near to optimal? , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[30]  Tong Heng Lee,et al.  Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[31]  E.K. Burke,et al.  Hybrid population-based metaheuristic approaches for the space allocation problem , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[32]  Ming-Hsien Yang,et al.  An efficient algorithm to allocate shelf space , 2001, Eur. J. Oper. Res..

[33]  Sadiq M. Sait,et al.  Evolutionary algorithms, simulated annealing and tabu search: a comparative study , 2001 .

[34]  Carlos A. Brizuela,et al.  Multi-objective Flow-Shop: Preliminary Results , 2001, EMO.

[35]  Jeffrey Horn,et al.  The Niched Pareto Genetic Algorithm 2 Applied to the Design of Groundwater Remediation Systems , 2001, EMO.

[36]  Kaisa Miettinen,et al.  Some Methods for Nonlinear Multi-objective Optimization , 2001, EMO.

[37]  Gary B. Lamont,et al.  A Statistical Comparison of Multiobjective Evolutionary Algorithms Including the MOMGA-II , 2001, EMO.

[38]  Marco Laumanns,et al.  On the Effects of Archiving, Elitism, and Density Based Selection in Evolutionary Multi-objective Optimization , 2001, EMO.

[39]  Richard A. Watson,et al.  Reducing Local Optima in Single-Objective Problems by Multi-objectivization , 2001, EMO.

[40]  Carlos A. Coello Coello,et al.  A Short Tutorial on Evolutionary Multiobjective Optimization , 2001, EMO.

[41]  Mitsuo Gen,et al.  Specification of Genetic Search Directions in Cellular Multi-objective Genetic Algorithms , 2001, EMO.

[42]  Sam Kwong,et al.  Genetic Algorithms : Concepts and Designs , 1998 .

[43]  Andrzej Jaszkiewicz Comparison of local search-based metaheuristics on the multiple objective knapsack problem , 2001 .

[44]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[45]  Edmund K. Burke,et al.  Combining Hybrid Metaheuristics and Populations for the Multiobjective Optimisation of Space Allocation Problems , 2001 .

[46]  Milind Dawande,et al.  Approximation Algorithms for the Multiple Knapsack Problem with Assignment Restrictions , 2000, J. Comb. Optim..

[47]  Xavier Gandibleux,et al.  A survey and annotated bibliography of multiobjective combinatorial optimization , 2000, OR Spectr..

[48]  Talal M. Alkhamis,et al.  A comparison between simulated annealing, genetic algorithm and tabu search methods for the unconstrained quadratic Pseudo-Boolean function , 2000 .

[49]  Alain Hertz,et al.  A framework for the description of evolutionary algorithms , 2000, Eur. J. Oper. Res..

[50]  Keith A. Seffen,et al.  A SIMULATED ANNEALING ALGORITHM FOR MULTIOBJECTIVE OPTIMIZATION , 2000 .

[51]  Wilhelm Erben,et al.  A Grouping Genetic Algorithm for Graph Colouring and Exam Timetabling , 2000, PATAT.

[52]  George M. White,et al.  Examination Timetables and Tabu Search with Longer-Term Memory , 2000, PATAT.

[53]  Peter I. Cowling,et al.  Three Methods to Automate the Space Allocation Process in UK Universities , 2000, PATAT.

[54]  Luca Di Gaspero,et al.  Tabu Search Techniques for Examination Timetabling , 2000, PATAT.

[55]  João C. N. Clímaco,et al.  An Interactive Method for 0-1 Multiobjective Problems Using Simulated Annealing and Tabu Search , 2000, J. Heuristics.

[56]  Arnaud Fréville,et al.  Tabu Search Based Procedure for Solving the 0-1 MultiObjective Knapsack Problem: The Two Objectives Case , 2000, J. Heuristics.

[57]  Joshua D. Knowles,et al.  M-PAES: a memetic algorithm for multiobjective optimization , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[58]  Mitsuo Gen,et al.  Cellular Genetic Local Search for Multi-Objective Optimization , 2000, GECCO.

[59]  Filippo Menczer,et al.  Efficient and Scalable Pareto Optimization by Evolutionary Local Selection Algorithms , 2000, Evolutionary Computation.

[60]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[61]  Gary B. Lamont,et al.  Multiobjective Evolutionary Algorithms: Analyzing the State-of-the-Art , 2000, Evolutionary Computation.

[62]  David W. Corne,et al.  Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.

[63]  Andrew Kusiak,et al.  Computational Intelligence in Design and Manufacturing , 2000 .

[64]  Wun-Hwa Chen,et al.  A hybrid heuristic to solve a task allocation problem , 2000, Comput. Oper. Res..

[65]  Robin S Liggett,et al.  Automated facilities layout: past, present and future , 2000 .

[66]  Edmund K. Burke,et al.  Hybrid evolutionary techniques for the maintenance scheduling problem , 2000 .

[67]  Lester Ingber,et al.  Adaptive simulated annealing (ASA): Lessons learned , 2000, ArXiv.

[68]  C. Coello TREATING CONSTRAINTS AS OBJECTIVES FOR SINGLE-OBJECTIVE EVOLUTIONARY OPTIMIZATION , 2000 .

[69]  A. Percus,et al.  Nature's Way of Optimizing , 1999, Artif. Intell..

[70]  Silvano Martello,et al.  Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization , 2012 .

[71]  Edmund K. Burke,et al.  A memetic algorithm to schedule planned maintenance for the national grid , 1999, JEAL.

[72]  Eckart Zitzler,et al.  Evolutionary algorithms for multiobjective optimization: methods and applications , 1999 .

[73]  P. Preux,et al.  Towards hybrid evolutionary algorithms , 1999 .

[74]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[75]  Jiyin Liu,et al.  The impact of neighbourhood size on the process of simulated annealing: computational experiments on the flowshop scheduling problem , 1999 .

[76]  Marco Dorigo,et al.  New Ideas in Optimisation , 1999 .

[77]  J. A. Bland LAYOUT OF FACILITIES USING AN ANT SYSTEM APPROACH , 1999 .

[78]  Kalyanmoy Deb,et al.  Multi-objective Genetic Algorithms: Problem Difficulties and Construction of Test Problems , 1999, Evolutionary Computation.

[79]  A. Baykasoğlu,et al.  A TABOO SEARCH BASED APPROACH TO FIND THE PARETO OPTIMAL SET IN MULTIPLE OBJECTIVE OPTIMIZATION , 1999 .

[80]  J. A. Bland Space-planning by ant colony optimisation , 1999 .

[81]  Andrew J. Davenport,et al.  Cooperative Strategies for Solving the Bicriteria Sparse Multiple Knapsack Problem , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[82]  Carlos A. Coello Coello,et al.  An updated survey of evolutionary multiobjective optimization techniques: state of the art and future trends , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[83]  E. L. Ulungu,et al.  MOSA method: a tool for solving multiobjective combinatorial optimization problems , 1999 .

[84]  Alain Hertz,et al.  A Taxonomy of Evolutionary Algorithms in Combinatorial Optimization , 1999, J. Heuristics.

[85]  Andrea Schaerf,et al.  Local search techniques for large high school timetabling problems , 1999, IEEE Trans. Syst. Man Cybern. Part A.

[86]  Pallab Dasgupta,et al.  Multiobjective heuristic search - an introduction to intelligent search methods for multicriteria optimization , 1999, Computational intelligence.

[87]  Ming-Hsien Yang,et al.  A study on shelf space allocation and management , 1999 .

[88]  David Coley,et al.  Introduction to Genetic Algorithms for Scientists and Engineers , 1999 .

[89]  F. Abdelaziz,et al.  A Hybrid Heuristic for Multiobjective Knapsack Problems , 1999 .

[90]  Robert G. Reynolds,et al.  Cultural algorithms: theory and applications , 1999 .

[91]  Tapan P. Bagchi,et al.  Multiobjective Scheduling by Genetic Algorithms , 1999 .

[92]  Pablo Moscato,et al.  Memetic algorithms: a short introduction , 1999 .

[93]  Hans Kellerer,et al.  Cardinality constrained bin‐packing problems , 1999, Ann. Oper. Res..

[94]  Masahiro Inuiguchi,et al.  Manpower allocation using genetic annealing , 1998, Eur. J. Oper. Res..

[95]  Edmund K. Burke,et al.  Automating Space Allocation in Higher Education , 1998, SEAL.

[96]  Jan Karel Lenstra,et al.  A local search template , 1998, Comput. Oper. Res..

[97]  Yeong-Dae Kim,et al.  A space partitioning method for facility layout problemswith shape constraints , 1998 .

[98]  Lothar Thiele,et al.  Multiobjective Optimization Using Evolutionary Algorithms - A Comparative Case Study , 1998, PPSN.

[99]  Hisao Ishibuchi,et al.  A multi-objective genetic local search algorithm and its application to flowshop scheduling , 1998, IEEE Trans. Syst. Man Cybern. Part C.

[100]  John E. Beasley,et al.  A Genetic Algorithm for the Multidimensional Knapsack Problem , 1998, J. Heuristics.

[101]  Peter Ross,et al.  Adapting Operator Settings in Genetic Algorithms , 1998, Evolutionary Computation.

[102]  Marco Dorigo,et al.  Metaheuristics for High School Timetabling , 1998, Comput. Optim. Appl..

[103]  Randy Goebel,et al.  Computational intelligence - a logical approach , 1998 .

[104]  R Eglese,et al.  Business Optimisation: Using mathematical programming , 1997, J. Oper. Res. Soc..

[105]  Piotr Czyzżak,et al.  Pareto simulated annealing—a metaheuristic technique for multiple‐objective combinatorial optimization , 1998 .

[106]  Takeo Yamada,et al.  Heuristic and reduction algorithms for the knapsack sharing problem , 1997, Comput. Oper. Res..

[107]  Edmund K. Burke,et al.  Space Allocation: An Analysis of Higher Education Requirements , 1997, PATAT.

[108]  Geoffrey C. Fox,et al.  A Comparison of Annealing Techniques for Academic Course Scheduling , 1997, PATAT.

[109]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[110]  M. Ehrgott,et al.  Connectedness of efficient solutions in multiple criteria combinatorial optimization , 1997 .

[111]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[112]  Hisao Ishibuchi,et al.  Effectiveness of Genetic Local Search Algorithms , 1997, ICGA.

[113]  John E. Beasley,et al.  A genetic algorithm for the generalised assignment problem , 1997, Comput. Oper. Res..

[114]  Victor J. Rayward-Smith,et al.  Modern Heuristic Search Methods , 1996 .

[115]  Gilbert Laporte,et al.  Metaheuristics: A bibliography , 1996, Ann. Oper. Res..

[116]  Peter J. Fleming,et al.  On the Performance Assessment and Comparison of Stochastic Multiobjective Optimizers , 1996, PPSN.

[117]  H. Ishibuchi,et al.  Multi-objective genetic algorithm and its applications to flowshop scheduling , 1996 .

[118]  Hideo Tanaka,et al.  Genetic algorithms for flowshop scheduling problems , 1996 .

[119]  M. Pirlot General local search methods , 1996 .

[120]  Colin Reeves,et al.  Hybrid genetic algorithms for bin-packing and related problems , 1996, Ann. Oper. Res..

[121]  Emanuel Falkenauer,et al.  A hybrid grouping genetic algorithm for bin packing , 1996, J. Heuristics.

[122]  Mike Wright,et al.  A comparison of neighborhood search techniques for multi-objective combinatorial problems , 1996, Comput. Oper. Res..

[123]  Thomas Bäck,et al.  Evolutionary Algorithms in Theory and Practice , 1996 .

[124]  Kathryn A. Dowsland,et al.  Variants of simulated annealing for the examination timetabling problem , 1996, Ann. Oper. Res..

[125]  Marco Dorigo,et al.  Ant system: optimization by a colony of cooperating agents , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[126]  Saïd Hanafi,et al.  Comparison of Heuristics for the 0–1 Multidimensional Knapsack Problem , 1996 .

[127]  Mike Wright,et al.  A preliminary investigation into the performance of heuristic search methods applied to compound combinatorial problems , 1996 .

[128]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[129]  J. P. Kelly,et al.  Meta-heuristics : theory & applications , 1996 .

[130]  Ibrahim H. Osman,et al.  Heuristics for the generalised assignment problem: simulated annealing and tabu search approaches , 1995 .

[131]  Kathryn A. Dowsland,et al.  General Cooling Schedules for a Simulated Annealing Based Timetabling System , 1995, PATAT.

[132]  Peter Ross,et al.  Peckish Initialisation Strategies for Evolutionary Timetabling , 1995, PATAT.

[133]  Anthony Wren,et al.  Scheduling, Timetabling and Rostering - A Special Relationship? , 1995, PATAT.

[134]  Edmund K. Burke,et al.  A Memetic Algorithm for University Exam Timetabling , 1995, PATAT.

[135]  Andrew Kusiak,et al.  Work-in-process space allocation: a model and an industrial application , 1995 .

[136]  Bryant A. Julstrom,et al.  What Have You Done for Me Lately? Adapting Operator Probabilities in a Steady-State Genetic Algorithm , 1995, ICGA.

[137]  Elia El-Darzi,et al.  An Integer Goal Programming Model to Allocate Offices to Staff in an Academic Institution , 1995 .

[138]  Edmund K. Burke,et al.  Specialised Recombinative Operators for Timetabling Problems , 1995, Evolutionary Computing, AISB Workshop.

[139]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[140]  A. Nagar,et al.  Multiple and bicriteria scheduling : A literature survey , 1995 .

[141]  D. Wolpert,et al.  No Free Lunch Theorems for Search , 1995 .

[142]  Fred W. Glover,et al.  Genetic algorithms and tabu search: Hybrids for optimization , 1995, Comput. Oper. Res..

[143]  S. Voß,et al.  Some Experiences On Solving Multiconstraint Zero-One Knapsack Problems With Genetic Algorithms , 1994 .

[144]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[145]  E. L. Ulungu,et al.  Multi‐objective combinatorial optimization problems: A survey , 1994 .

[146]  D. Costa,et al.  A tabu search algorithm for computing an operational timetable , 1994 .

[147]  David E. Goldberg,et al.  A niched Pareto genetic algorithm for multiobjective optimization , 1994, Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence.

[148]  Emanuel Falkenauer,et al.  A New Representation and Operators for Genetic Algorithms Applied to Grouping Problems , 1994, Evolutionary Computation.

[149]  Peter Ross,et al.  Fast Practical Evolutionary Timetabling , 1994, Evolutionary Computing, AISB Workshop.

[150]  Paolo Serafini,et al.  Simulated Annealing for Multi Objective Optimization Problems , 1994 .

[151]  Peter J. Fleming,et al.  Genetic Algorithms for Multiobjective Optimization: FormulationDiscussion and Generalization , 1993, ICGA.

[152]  Bennett L. Fox,et al.  Integrating and accelerating tabu search, simulated annealing, and genetic algorithms , 1993, Ann. Oper. Res..

[153]  Fred W. Glover,et al.  A user's guide to tabu search , 1993, Ann. Oper. Res..

[154]  C. Reeves Modern heuristic techniques for combinatorial problems , 1993 .

[155]  L. Ingber Adaptive Simulated Annealing (ASA) , 1993 .

[156]  Colin O. Benjamin,et al.  Planning Facilities at the University of Missouri-Rolla , 1992 .

[157]  Leon F. McGinnis,et al.  Facility Layout and Location: An Analytical Approach , 1991 .

[158]  David Abramson,et al.  Constructing school timetables using simulated annealing: sequential and parallel algorithms , 1991 .

[159]  Paolo Toth,et al.  Knapsack Problems: Algorithms and Computer Implementations , 1990 .

[160]  David Romero,et al.  Methods for the one-dimensional space allocation problem , 1990, Comput. Oper. Res..

[161]  Lawrence. Davis,et al.  Handbook Of Genetic Algorithms , 1990 .

[162]  Pablo Moscato,et al.  On Evolution, Search, Optimization, Genetic Algorithms and Martial Arts : Towards Memetic Algorithms , 1989 .

[163]  R. S. Laundy,et al.  Multiple Criteria Optimisation: Theory, Computation and Application , 1989 .

[164]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[165]  Fred W. Glover,et al.  Future paths for integer programming and links to artificial intelligence , 1986, Comput. Oper. Res..

[166]  Fred S. Zufryden,et al.  A Dynamic Programming Approach for Product Selection and Supermarket Shelf-Space Allocation , 1986 .

[167]  N. K. Kwak,et al.  A Hierarchical Goal-Programming Approach to Reverse Resource Allocation in Institutions of Higher Learning , 1986 .

[168]  Victor J. Rayward-Smith,et al.  A first course in computability , 1986 .

[169]  J. D. Schaffer,et al.  Multiple Objective Optimization with Vector Evaluated Genetic Algorithms , 1985, ICGA.

[170]  Richard E. Rosenthal,et al.  Principles of multiobjective optimization , 1984 .

[171]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[172]  Simon French,et al.  Multi-Objective Decision Analysis with Engineering and Business Applications , 1983 .

[173]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[174]  Robert Jacobs,et al.  A Multiple Objective Approach to Space Planning for Academic Facilities , 1979 .

[175]  Allen Van Gelder,et al.  Computer Algorithms: Introduction to Design and Analysis , 1978 .

[176]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[177]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[178]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[179]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.