Another look at the phenomenon of phase transition

This study is motivated by the question whether there exists a characteristic feature common to the phenomenon of phase transition of properties taking place in the course of evolution of various sets of objects of different nature. A novel measure model of phase transition is presented, providing an insight into the process underlying different phase transitions. First, it is shown to conform to several famous and extensively investigated cases of phase transition. Then a few close consequences of applying the measure model are presented. It has been proved that monotone properties undergo a sharp phase transition. The measure model provides a sufficient condition of a sharp phase transition common to monotone and non-monotone properties as well. The measure model reveals that if a property Q undergoes a phase transition in the course of evolution of objects of a certain type, then there exist other secondary properties related to the measure of Q that also undergo a phase transition during the evolution.

[1]  Alexander K. Hartmann,et al.  Statistical mechanics perspective on the phase transition in vertex covering of finite-connectivity random graphs , 2000, Theor. Comput. Sci..

[2]  Christian Borgs,et al.  Phase transition and finite‐size scaling for the integer partitioning problem , 2001, Random Struct. Algorithms.

[3]  Béla Bollobás,et al.  Threshold functions , 1987, Comb..

[4]  Tad Hogg,et al.  Phase Transitions and the Search Problem , 1996, Artif. Intell..

[5]  E. Friedgut,et al.  Sharp thresholds of graph properties, and the -sat problem , 1999 .

[6]  Yannis C. Stamatiou,et al.  Random Constraint Satisfaction: A More Accurate Picture , 1997, CP.

[7]  Gilles Dequen,et al.  A backbone-search heuristic for efficient solving of hard 3-SAT formulae , 2001, IJCAI.

[8]  Sarit Kraus,et al.  Combining Knowledge Bases Consisting of First Order Theories , 1991, ISMIS.

[9]  Olivier Dubois,et al.  Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.

[10]  Tad Hogg,et al.  Exploiting the Deep Structure of Constraint Problems , 1994, Artif. Intell..

[11]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[12]  James M. Crawford,et al.  Experimental Results on the Crossover Point in Random 3-SAT , 1996, Artif. Intell..

[13]  Richard E. Korf,et al.  A Complete Anytime Algorithm for Number Partitioning , 1998, Artif. Intell..

[14]  Dimitris Achlioptas,et al.  Optimal myopic algorithms for random 3-SAT , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[15]  Béla Bollobás,et al.  The scaling window of the 2‐SAT transition , 1999, Random Struct. Algorithms.

[16]  Eliezer L. Lozinskii,et al.  Information and evidence in logic systems , 1994, J. Exp. Theor. Artif. Intell..

[17]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[18]  Jacques Carlier,et al.  SAT versus UNSAT , 1993, Cliques, Coloring, and Satisfiability.

[19]  Toby Walsh,et al.  Backbones in Optimization and Approximation , 2001, IJCAI.

[20]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[21]  Cristopher Moore,et al.  The asymptotic order of the random k-SAT threshold , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[22]  Toby Walsh,et al.  The SAT Phase Transition , 1994, ECAI.

[23]  Eliezer L. Lozinskii,et al.  Resolving contradictions: A plausible semantics for inconsistent systems , 1994, Journal of Automated Reasoning.

[24]  Stephan Mertens,et al.  A physicist's approach to number partitioning , 2000, Theor. Comput. Sci..

[25]  John G. Kemeny,et al.  A logical measure function , 1953, Journal of Symbolic Logic.

[26]  Ehud Friedgut,et al.  A Sharp Threshold for k-Colorability , 1999, Random Struct. Algorithms.

[27]  Svante Janson,et al.  Random graphs , 2000, Wiley-Interscience series in discrete mathematics and optimization.

[28]  Wei Li,et al.  Exact Phase Transitions in Random Constraint Satisfaction Problems , 2000, J. Artif. Intell. Res..

[29]  Lynn Andrea Stein,et al.  Skeptical Inheritance: Computing the Intersection of Credulous Extensions , 1989, IJCAI.

[30]  Phokion G. Kolaitis,et al.  Comparing phase transitions and peak cost in PP-complete satisfiability problems , 2002, AAAI/IAAI.

[31]  D. Achlioptas,et al.  A sharp threshold for k-colorability , 1999 .

[32]  János Komlós,et al.  Limit distribution for the existence of hamiltonian cycles in a random graph , 1983, Discret. Math..

[33]  Eliezer L. Lozinskii,et al.  Consistent subsets of inconsistent systems: structure and behaviour , 2003, J. Exp. Theor. Artif. Intell..

[34]  G. Kalai,et al.  Every monotone graph property has a sharp threshold , 1996 .

[35]  Toby Walsh,et al.  Random Constraint Satisfaction: Flaws and Structure , 2004, Constraints.

[36]  Bruce A. Reed,et al.  Mick gets some (the odds are on his side) (satisfiability) , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[37]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[38]  Eliezer L. Lozinskii,et al.  The Good Old Davis-Putnam Procedure Helps Counting Models , 2011, J. Artif. Intell. Res..

[39]  Tad Hogg,et al.  Phase Transitions in Artificial Intelligence Systems , 1987, Artif. Intell..

[40]  Rémi Monasson,et al.  Statistical mechanics methods and phase transitions in optimization problems , 2001, Theor. Comput. Sci..

[41]  Andreas Goerdt A Threshold for Unsatisfiability , 1996, J. Comput. Syst. Sci..