Input to layer 1 of somatosensory cortex: Local input outweighs long-range and can modulate the activity of layer 1 interneurons

Neocortical layer (L) 1 is a locus for interactions between long-range inputs, L1 interneurons and apical tuft dendrites of pyramidal neurons. Even though we have a wealth of information about L1, the level and effect of local input to this layer have not been quantified. Here we characterized the input to L1 of mouse somatosensory cortex with fast blue, monosynaptic rabies and optogenetics. Our work shows that most of the input to L1 is local, and that both local and long-range inputs to this layer arise predominantly from L2/3 and L5 neurons. Subtypes of L5 and L6b neurons project to the overlying L1 with different probabilities. VIP and SST interneurons in L2/3 and L5 also innervate L1. A subset of local L5, the intratelencephalic, pyramidal neurons, drive L1 interneurons but have no effect on L5 apical tuft dendrites. Monosynaptic rabies-based retrograde labelling reveals presynaptic boutons covering the entire somato-dendritic axis of pyramidal neurons, including in L1. When fast blue application was combined with rabies virus, we found that only a fraction of local and long-range neurons was both presynaptic to L5 neurons and projected to L1. These results demonstrate that L1 receives a large proportion of its input from local neurons, and that some of these inputs specifically target interneurons. We conclude that L1 is not just a site for interaction between long-range feedback and apical tuft dendrites of pyramidal cells, it is also a site for complex modulation of pyramidal neurons and interneurons by local inputs.Here we used traditional retrograde tracing combined with physiology and rabies virus to quantify the connectivity to L1 of somatosensory cortex. We show that local inputs far outweigh long-range inputs. We also show that subtypes of L5 neurons target the overlying L1 and depolarize L1 interneurons but have little effect on the apical tuft dendrites of L5 neurons. Local and long-range cortical inputs to L1 arise from presynaptic neurons in L2/3 and L5. The long-range input arises from a variety of cortical areas including primary motor, secondary somatosensory and motor, perirhinal and visual cortex. Thus, interneurons in L1 and the dendrites of pyramidal neurons are the site of complex interactions with local and long-range inputs.

[1]  Staci A. Sorensen,et al.  Morphological diversity of single neurons in molecularly defined cell types , 2021, Nature.

[2]  W. Usrey,et al.  Cortical control of behavior and attention from an evolutionary perspective , 2021, Neuron.

[3]  I. Lampl,et al.  NDNF interneurons in layer 1 gain-modulate whole cortical columns according to an animal’s behavioral state , 2021, Neuron.

[4]  B. Rudy,et al.  Neocortical Layer 1: An Elegant Solution to Top-Down and Bottom-Up Integration. , 2021, Annual review of neuroscience.

[5]  Martinna G Raineri Tapies,et al.  Circuit organization of the excitatory sensorimotor loop through hand/forelimb S1 and M1 , 2021, bioRxiv.

[6]  M. Larkum,et al.  Cellular Mechanisms of Conscious Processing , 2020, Trends in Cognitive Sciences.

[7]  M. Larkum,et al.  Active dendritic currents gate descending cortical outputs in perception , 2020, Nature Neuroscience.

[8]  Rachel C. Bandler,et al.  Mining the jewels of the cortex’s crowning mystery , 2020, Current Opinion in Neurobiology.

[9]  Henry Kennedy,et al.  Cortical hierarchy, dual counterstream architecture and the importance of top-down generative networks , 2020, NeuroImage.

[10]  M. Larkum,et al.  Layer 6b Is Driven by Intracortical Long-Range Projection Neurons. , 2020, Cell reports.

[11]  Moritz Helmstaedter,et al.  Cell-type specific innervation of cortical pyramidal cells at their apical dendrites , 2020, eLife.

[12]  M. Larkum,et al.  General Anesthesia Decouples Cortical Pyramidal Neurons , 2020, Cell.

[13]  M. Larkum,et al.  Perirhinal input to neocortical layer 1 controls learning , 2019, Science.

[14]  G. Fishell,et al.  Four Unique Interneuron Populations Reside in Neocortical Layer 1 , 2018, The Journal of Neuroscience.

[15]  Johannes J. Letzkus,et al.  Learning-Related Plasticity in Dendrite-Targeting Layer 1 Interneurons , 2018, Neuron.

[16]  Lars Muckli,et al.  A Perspective on Cortical Layering and Layer-Spanning Neuronal Elements , 2018, Front. Neuroanat..

[17]  Carl C. H. Petersen,et al.  Diverse Long-Range Axonal Projections of Excitatory Layer 2/3 Neurons in Mouse Barrel Cortex , 2018, Front. Neuroanat..

[18]  Zachary T. Nolan,et al.  Subset of Cortical Layer 6b Neurons Selectively Innervates Higher Order Thalamic Nuclei in Mice , 2018, Cerebral cortex.

[19]  D. C. Essen,et al.  The Mouse Cortical Connectome, Characterized by an Ultra-Dense Cortical Graph, Maintains Specificity by Distinct Connectivity Profiles , 2018, Neuron.

[20]  Marcel Oberlaender,et al.  Cell Type-Specific Structural Organization of the Six Layers in Rat Barrel Cortex , 2017, Front. Neuroanat..

[21]  B. Sakmann From single cells and single columns to cortical networks: dendritic excitability, coincidence detection and synaptic transmission in brain slices and brains , 2017, Experimental physiology.

[22]  David H. Brann,et al.  Medial and Lateral Entorhinal Cortex Differentially Excite Deep versus Superficial CA1 Pyramidal Neurons. , 2017, Cell reports.

[23]  M. Larkum,et al.  Active cortical dendrites modulate perception , 2016, Science.

[24]  Heiko J. Luhmann,et al.  Layer-Specific Refinement of Sensory Coding in Developing Mouse Barrel Cortex , 2016, Cerebral cortex.

[25]  Erika E. Fanselow,et al.  Target-specific M1 inputs to infragranular S1 pyramidal neurons. , 2016, Journal of neurophysiology.

[26]  Mitra Javadzadeh,et al.  Long-range population dynamics of anatomically defined neocortical networks , 2016, eLife.

[27]  Rebecca A. Mease,et al.  Corticothalamic Spike Transfer via the L5B-POm Pathway in vivo , 2016, Cerebral cortex.

[28]  Edward M Callaway,et al.  Improved Monosynaptic Neural Circuit Tracing Using Engineered Rabies Virus Glycoproteins. , 2016, Cell reports.

[29]  E. Callaway,et al.  Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function , 2015, Neuron.

[30]  F. Helmchen,et al.  Pathway-specific reorganization of projection neurons in somatosensory cortex during learning , 2015, Nature Neuroscience.

[31]  Andrew S. Johnson,et al.  Beyond Columnar Organization: Cell Type- and Target Layer-Specific Principles of Horizontal Axon Projection Patterns in Rat Vibrissal Cortex , 2015, Cerebral cortex.

[32]  Erika E Fanselow,et al.  Motor cortex broadly engages excitatory and inhibitory neurons in somatosensory barrel cortex. , 2014, Cerebral cortex.

[33]  E. Callaway,et al.  Previously Published Works Uc Irvine Title: Cell-type-specific Circuit Connectivity of Hippocampal Ca1 Revealed through Cre-dependent Rabies Tracing Cell-type Specific Circuit Connectivity of Hippocampal Ca1 Revealed through Cre-dependent Rabies Tracing Nih Public Access Author Manuscript , 2022 .

[34]  C. Gerfen,et al.  GENSAT BAC Cre-Recombinase Driver Lines to Study the Functional Organization of Cerebral Cortical and Basal Ganglia Circuits , 2013, Neuron.

[35]  Ian R. Wickersham,et al.  Axonal and subcellular labeling using modified rabies viral vectors , 2013, Nature Communications.

[36]  A. E. Casale,et al.  Motor Cortex Feedback Influences Sensory Processing by Modulating Network State , 2013, Neuron.

[37]  Fumitaka Osakada,et al.  Design and generation of recombinant rabies virus vectors , 2013, Nature Protocols.

[38]  F. Helmchen,et al.  Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex , 2013, Nature.

[39]  M. Larkum A cellular mechanism for cortical associations: an organizing principle for the cerebral cortex , 2013, Trends in Neurosciences.

[40]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[41]  Omar J. Ahmed,et al.  Thalamic Control of Layer 1 Circuits in Prefrontal Cortex , 2012, The Journal of Neuroscience.

[42]  E. Kuramoto,et al.  A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors. , 2012, Cerebral cortex.

[43]  Matthew R. Krause,et al.  Surround suppression and sparse coding in visual and barrel cortices , 2012, Front. Neural Circuits.

[44]  W. Gerstner,et al.  Microcircuits of excitatory and inhibitory neurons in layer 2/3 of mouse barrel cortex. , 2012, Journal of neurophysiology.

[45]  J. Ainge,et al.  Ontogeny of neural circuits underlying spatial memory in the rat , 2012, Front. Neural Circuits.

[46]  James G. King,et al.  Intrinsic morphological diversity of thick‐tufted layer 5 pyramidal neurons ensures robust and invariant properties of in silico synaptic connections , 2012, The Journal of physiology.

[47]  E. Callaway,et al.  Monosynaptic inputs to ErbB4‐expressing inhibitory neurons in mouse primary somatosensory cortex , 2011, The Journal of comparative neurology.

[48]  H. S. Meyer,et al.  Cell Type–Specific Three-Dimensional Structure of Thalamocortical Circuits in a Column of Rat Vibrissal Cortex , 2011, Cerebral cortex.

[49]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[50]  M. Davidson,et al.  An Improved Cerulean Fluorescent Protein with Enhanced Brightness and Reduced Reversible Photoswitching , 2011, PloS one.

[51]  G. Shepherd The Microcircuit Concept Applied to Cortical Evolution: from Three-Layer to Six-Layer Cortex , 2011, Front. Neuroanat..

[52]  Christian Wozny,et al.  Specificity of Synaptic Connectivity between Layer 1 Inhibitory Interneurons and Layer 2/3 Pyramidal Neurons in the Rat Neocortex , 2011, Cerebral cortex.

[53]  A. Aertsen,et al.  Beyond the Cortical Column: Abundance and Physiology of Horizontal Connections Imply a Strong Role for Inputs from the Surround , 2011, Front. Neurosci..

[54]  G. Fishell,et al.  The Largest Group of Superficial Neocortical GABAergic Interneurons Expresses Ionotropic Serotonin Receptors , 2010, The Journal of Neuroscience.

[55]  Ad Aertsen,et al.  A modeler's view on the spatial structure of intrinsic horizontal connectivity in the neocortex , 2010, Progress in Neurobiology.

[56]  C. Petersen,et al.  Long‐range connectivity of mouse primary somatosensory barrel cortex , 2010, The European journal of neuroscience.

[57]  F. Clascá,et al.  Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent. , 2009, Cerebral cortex.

[58]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[59]  K. Svoboda,et al.  Genetic Dissection of Neural Circuits , 2008, Neuron.

[60]  R. Douglas,et al.  Mapping the Matrix: The Ways of Neocortex , 2007, Neuron.

[61]  K. Svoboda,et al.  Channelrhodopsin-2–assisted circuit mapping of long-range callosal projections , 2007, Nature Neuroscience.

[62]  Ian R. Wickersham,et al.  Monosynaptic Restriction of Transsynaptic Tracing from Single, Genetically Targeted Neurons , 2007, Neuron.

[63]  J. Lübke,et al.  Efficacy and connectivity of intracolumnar pairs of layer 2/3 pyramidal cells in the barrel cortex of juvenile rats , 2006, The Journal of physiology.

[64]  R. Douglas,et al.  A Quantitative Map of the Circuit of Cat Primary Visual Cortex , 2004, The Journal of Neuroscience.

[65]  Hiroaki Igarashi,et al.  Thalamocortical projection from the ventral posteromedial nucleus sends its collaterals to layer I of the primary somatosensory cortex in rat , 2004, Neuroscience Letters.

[66]  R. Douglas,et al.  Neuronal circuits of the neocortex. , 2004, Annual review of neuroscience.

[67]  Bert Sakmann,et al.  Sub‐ and suprathreshold receptive field properties of pyramidal neurones in layers 5A and 5B of rat somatosensory barrel cortex , 2004, The Journal of physiology.

[68]  Shiaoching Gong,et al.  A gene expression atlas of the central nervous system based on bacterial artificial chromosomes , 2003, Nature.

[69]  Martin Deschênes,et al.  Single‐cell study of motor cortex projections to the barrel field in rats , 2003, The Journal of comparative neurology.

[70]  G. Raivich,et al.  Connective tissue growth factor: a novel marker of layer vii neurons in the rat cerebral cortex , 2003, Neuroscience.

[71]  L. Cauller,et al.  Widespread projections from subgriseal neurons (layer VII) to layer I in adult rat cortex , 1999, The Journal of comparative neurology.

[72]  Muneyuki Ito,et al.  Premature bifurcation of the apical dendritic trunk of vibrissa‐responding pyramidal neurones of X‐irradiated rat neocortex , 1998, The Journal of physiology.

[73]  Miguel Marín-Padilla,et al.  Cajal–Retzius cells and the development of the neocortex , 1998, Trends in Neurosciences.

[74]  B W Connors,et al.  Backward cortical projections to primary somatosensory cortex in rats extend long horizontal axons in layer I , 1998, The Journal of comparative neurology.

[75]  J. DeFelipe Types of neurons, synaptic connections and chemical characteristics of cells immunoreactive for calbindin-D28K, parvalbumin and calretinin in the neocortex , 1997, Journal of Chemical Neuroanatomy.

[76]  L. Cauller Layer I of primary sensory neocortex: where top-down converges upon bottom-up , 1995, Behavioural Brain Research.

[77]  J. DeFelipe,et al.  The pyramidal neuron of the cerebral cortex: Morphological and chemical characteristics of the synaptic inputs , 1992, Progress in Neurobiology.

[78]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  A. Burkhalter,et al.  Intrinsic connections of rat primary visual cortex: Laminar organization of axonal projections , 1989, The Journal of comparative neurology.

[80]  Larry W. Swanson,et al.  Cajal on the Cerebral Cortex: An Annotated Translation of the Complete Writings , 1988 .

[81]  D. Hubel Exploration of the primary visual cortex, 1955–78 , 1982, Nature.

[82]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[83]  P. Somogyi,et al.  Quantitative distribution of GABA-immunoreactive neurons in the visual cortex (area 17) of the cat , 2004, Experimental Brain Research.

[84]  H. Kuypers,et al.  Double retrograde neuronal labeling through divergent axon collaterals, using two fluorescent tracers with the same excitation wavelength which label different features of the cell , 2004, Experimental Brain Research.

[85]  H. Kuypers,et al.  Diamidino yellow dihydrochloride (DY·2HCl); a new fluorescent retrograde neuronal tracer, which migrates only very slowly out of the cell , 2004, Experimental Brain Research.

[86]  P. Sterling The Synaptic Organization of the Brain , 1998 .

[87]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[88]  E. White Cortical Circuits , 1989, Birkhäuser Boston.

[89]  E. White Cortical Circuits: Synaptic Organization of the Cerebral Cortex , 1989 .

[90]  E. White General Organization of the Cerebral Cortex , 1989 .

[91]  G. Shepherd The Synaptic Organization of the Brain , 1979 .