3D Modeling of Discontinuity in the Spatial Distribution of Apartment Prices Using Voronoi Diagrams

An immanent feature of the housing market is a large spatial dispersion of real estate prices along with their simultaneous high stratification. Application of classic methods of data interpolation results in an excessive simplification of the outcome because of a conversion of the dispersed data sets into areas of spatial continuity by reducing the above-average real estate prices. The main aim of the article was to search for spatial discontinuities of real estate prices’ distribution with 3D modeling using Voronoi diagrams as a method of irregular division of this space. Used methods of geospatial analyses with GIS tools enabled to identify clusters of high housing market activity and to avoid an excessive generalization of data resulting from the reduction of the above-average real estate prices. The research was conducted for over 7000 real estate transactions in years 2010–2017 in Olsztyn, the capital city of Warmia and Mazury in Poland, resulting in a 3D visualization of real estate prices for the chosen market, including the discontinuity in their spatial distribution.

[1]  G. Polis,et al.  TOWARD AN INTEGRATION OF LANDSCAPE AND FOOD WEB ECOLOGY : The Dynamics of Spatially Subsidized Food Webs , 2005 .

[2]  Dermal exposure to dry powder spray paints using PXRF and the method of Dirichlet tesselations. , 2004, The Annals of occupational hygiene.

[3]  R. Kloosterman,et al.  The Polycentric Urban Region: Towards a Research Agenda , 2001 .

[4]  Radosław Cellmer,et al.  USE OF SPATIAL AUTOCORRELATION TO BUILD REGRESSION MODELS OF TRANSACTION PRICES , 2013 .

[5]  Paul Krugman,et al.  Development, Geography, and Economic Theory , 1995 .

[6]  Hal Finkel,et al.  Meshing the Universe: Integrating Analysis in Cosmological Simulations , 2012, 2012 SC Companion: High Performance Computing, Networking Storage and Analysis.

[7]  A. Venables,et al.  The Spatial Economy: Cities, Regions, and International Trade , 2000 .

[8]  Igor Orlov,et al.  ClusterViSu, a method for clustering of protein complexes by Voronoi tessellation in super-resolution microscopy , 2016, Scientific Reports.

[9]  Slawomir Kulesza,et al.  A comparative study of correlation methods for determination of fractal parameters in surface characterization , 2014 .

[10]  Miroslaw Belej,et al.  Application of Hierarchical Spatial Autoregressive Models to Develop Land Value Maps in Urbanized Areas , 2019, ISPRS Int. J. Geo Inf..

[11]  M. Burger,et al.  Spatial Structure and Productivity in US Metropolitan Areas , 2010 .

[12]  M. Burns,et al.  METHODS FOR MONITORING THE DETECTION OF MULTI-TEMPORAL LAND USE CHANGE THROUGH THE CLASSIFICATION OF URBAN AREAS , 2011 .

[13]  Surjya K. Pal,et al.  Progressive cutting tool wear detection from machined surface images using Voronoi tessellation method , 2013 .

[14]  R. Naiman,et al.  The Ecology of Interfaces: Riparian Zones , 1997 .

[15]  Jean-François Mari,et al.  Neutral modelling of agricultural landscapes by tessellation methods—Application for gene flow simulation. , 2009 .

[16]  J. Unold Dynamika systemu informacyjnego a racjonalność adaptacyjna : teoretyczno-metodologiczne podstawy nowego ujęcia zasady racjonalności , 2003 .

[17]  Tomoya Mori Monocentric Versus Polycentric Models in Urban Economics , 2006 .

[18]  Daniel E. Orenstein,et al.  Population and pavement: population growth and land development in Israel , 2010 .

[19]  Jacek Wołoszyn Możliwości wykorzystania iterowanego konwolucyjnego filtru uśredniającego w procesie generowania map interpolacyjnych , 2009 .

[20]  H. Tan,et al.  Natural element method for radiative heat transfer in two-dimensional semitransparent medium , 2013 .

[21]  A. Senetra,et al.  Analysis of changes in the land use structure of developed and urban areas in Eastern Poland , 2014 .

[22]  J. Barkley Rosser,et al.  The Complexity Era in Economics , 2011 .

[23]  Y. Pawitan,et al.  Constrained clustering of irregularly sampled spatial data , 2003 .

[24]  Guangqing Chi,et al.  Applied Spatial Data Analysis with R , 2015 .

[25]  Marta Gross,et al.  Good governance in some public real estate management systems , 2015 .

[26]  Advanced Analysis of SEM Images of Carbon-Ceramic Composites , 2007 .

[27]  Jiansheng Wu,et al.  A framework for delineating the regional boundaries of PM2.5 pollution: A case study of China. , 2018, Environmental pollution.

[28]  R. Naiman,et al.  River Ecology and Management in the Pacific Coastal Ecoregion , 1998 .

[29]  Christopher M. Gold,et al.  Tessellations in GIS: Part I—putting it all together , 2016, Geo spatial Inf. Sci..

[30]  Jennifer Moss,et al.  New statistical methods for investigating submarine pockmarks , 2011, Comput. Geosci..

[31]  Q. Cheng,et al.  Multifractal characterization of urban residential land price in space and time , 2012 .

[32]  Mats Wilhelmsson,et al.  Spatial Models in Real Estate Economics , 2002 .

[33]  Debasish Ghose,et al.  Heterogeneous locational optimisation using a generalised Voronoi partition , 2013, Int. J. Control.

[34]  Dong-Ming Yan,et al.  Efficient computation of clipped Voronoi diagram for mesh generation , 2013, Comput. Aided Des..

[35]  W. Tobler A Computer Movie Simulating Urban Growth in the Detroit Region , 1970 .

[36]  James F. Peters,et al.  Towards a fourth spatial dimension of brain activity , 2016, Cognitive Neurodynamics.

[37]  M. R. Kaimal,et al.  Voronoi Diagram-Based Geometric Approach for Social Network Analysis , 2014 .

[38]  Mark J. Kutzbach,et al.  Do Labor Market Networks Have an Important Spatial Dimension? , 2012 .

[39]  Using Baseball in Social Studies Instruction: Addressing the Five Fundamental Themes of Geography , 2005 .

[40]  A. Bailly,et al.  Applied geography : a world perspective , 2010 .

[41]  Chuanrong Zhang,et al.  Spatially non-stationary relationships between urban residential land price and impact factors in Wuhan city, China , 2016 .

[42]  J. Diniz‐Filho,et al.  Spatial autocorrelation and red herrings in geographical ecology , 2003 .

[43]  W. Watunyuta,et al.  Voronoi tessellation-based spatial domain analysis of digital halftoning methods , 1997 .

[44]  J. B. Parr,et al.  The Polycentric Urban Region: A Closer Inspection , 2004 .

[45]  Min Zhou,et al.  Complex Spatial Morphology of Urban Housing Price Based on Digital Elevation Model: A Case Study of Wuhan City, China , 2019, Sustainability.

[46]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[47]  Murillo Rehder Batista,et al.  A robot on-line area coverage approach based on the probabilistic Lloyd method , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[48]  Mir Abolfazl Mostafavi,et al.  Geosimulation of Geographic Dynamics Based on Voronoi Diagram , 2010, Trans. Comput. Sci..

[49]  Jay Lee,et al.  Weighted network Voronoi Diagrams for local spatial analysis , 2015, Comput. Environ. Urban Syst..

[50]  Robert Haining,et al.  Spatial Data Analysis: Theory and Practice , 2003 .

[51]  Paul Steinmann,et al.  Investigations on the polygonal finite element method: Constrained adaptive Delaunay tessellation and conformal interpolants , 2013 .

[52]  Hans Westlund,et al.  The Spatial Dimension of Social Capital , 2010 .

[53]  Richard Arnott,et al.  Optimal city size in a spatial economy , 1979 .

[54]  Tinghua Ai,et al.  Generation of constrained network Voronoi diagram using linear tessellation and expansion method , 2015, Comput. Environ. Urban Syst..

[55]  M. Bełej Catastrophe Theory in Explaining Price Dynamics on the Real Estate Market , 2013 .

[56]  Ian Williamson,et al.  Land administration “best practice” providing the infrastructure for land policy implementation , 2001 .

[57]  Louise Connell,et al.  Space–time interdependence: Evidence against asymmetric mapping between time and space , 2015, Cognition.

[58]  A. Beltratti,et al.  International house prices and macroeconomic fluctuations , 2010 .

[59]  N. P. Santos,et al.  Discrete evaluation of Stokes’s integral by means of Voronoi and Delaunay structures , 2004 .