Data-driven material models for atomistic simulation

The central approximation made in classical molecular dynamics simulation of materials is the interatomic potential used to calculate the forces on the atoms. Great effort and ingenuity is required to construct viable functional forms and find accurate parametrizations for potentials using traditional approaches. Machine learning has emerged as an effective alternative approach to develop accurate and robust interatomic potentials. Starting with a very general model form, the potential is learned directly from a database of electronic structure calculations and therefore can be viewed as a multiscale link between quantum and classical atomistic simulations. Risk of inaccurate extrapolation exists outside the narrow range of time and length scales where the two methods can be directly compared. In this work, we use the spectral neighbor analysis potential (SNAP) and show how a fit can be produced with minimal interpolation errors which is also robust in extrapolating beyond training. To demonstrate the method, we have developed a tungsten-beryllium potential suitable for the full range of binary compositions. Subsequently, large-scale molecular dynamics simulations were performed of high energy Be atom implantation onto the (001) surface of solid tungsten. The machine learned W-Be potential generates a population of implantation structures consistent with quantum calculations of defect formation energies. A very shallow ($l2\phantom{\rule{0.16em}{0ex}}\mathrm{nm}$) average Be implantation depth is predicted which may explain ITER diverter degradation in the presence of beryllium.

[1]  R. Kondor,et al.  Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. , 2009, Physical review letters.

[2]  Anand Chandrasekaran,et al.  Polymer Genome: A Data-Powered Polymer Informatics Platform for Property Predictions , 2018, The Journal of Physical Chemistry C.

[3]  R. Kondor,et al.  On representing chemical environments , 2012, 1209.3140.

[4]  J. Tersoff,et al.  Empirical interatomic potential for silicon with improved elastic properties. , 1988, Physical review. B, Condensed matter.

[5]  P. Brault,et al.  Trapping and release of helium in tungsten , 2011 .

[6]  S. Brezinsek,et al.  Plasma-surface interaction in the Be/W environment: Conclusions drawn from the JET-ILW for ITER , 2015 .

[7]  C. Giroud,et al.  Residual carbon content in the initial ITER-Like Wall experiments at JET , 2013 .

[8]  S. Plimpton,et al.  Computational limits of classical molecular dynamics simulations , 1995 .

[9]  Ralf Drautz,et al.  Atomic cluster expansion for accurate and transferable interatomic potentials , 2019, Physical Review B.

[10]  Rampi Ramprasad,et al.  A universal strategy for the creation of machine learning-based atomistic force fields , 2017, npj Computational Materials.

[11]  E Weinan,et al.  DeePMD-kit: A deep learning package for many-body potential energy representation and molecular dynamics , 2017, Comput. Phys. Commun..

[12]  D. Varshalovich,et al.  Quantum Theory of Angular Momentum , 1988 .

[13]  A. V. Duin,et al.  Reactive Potentials for Advanced Atomistic Simulations , 2013 .

[14]  K. Nordlund,et al.  A Be–W interatomic potential , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  B. Wirth,et al.  A comparison of interatomic potentials for modeling tungsten–hydrogen–helium plasma–surface interactions , 2015 .

[16]  Shyue Ping Ong,et al.  Accurate Force Field for Molybdenum by Machine Learning Large Materials Data , 2017, 1706.09122.

[17]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[18]  Rampi Ramprasad,et al.  A study of adatom ripening on an Al (1 1 1) surface with machine learning force fields , 2016, 1610.04684.

[19]  Brian D. Wirth,et al.  Crystal orientation effects on helium ion depth distributions and adatom formation processes in plasma-facing tungsten , 2014 .

[20]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[21]  Peter M. Derlet,et al.  Multiscale modeling of crowdion and vacancy defects in body-centered-cubic transition metals , 2007 .

[22]  D. Silversmith,et al.  PRESSURE DEPENDENCE OF THE ELASTIC CONSTANTS OF BERYLLIUM AND BERYLLIUM-- COPPER ALLOYS. , 1970 .

[23]  Yanli Wang,et al.  Quantum ESPRESSO: a modular and open-source software project for quantum simulations of materials , 2009 .

[24]  W. M. Clift,et al.  Be–W alloy formation in static and divertor-plasma simulator experiments , 2007 .

[25]  Jian Luo,et al.  Quantum-accurate spectral neighbor analysis potential models for Ni-Mo binary alloys and fcc metals , 2018, Physical Review B.

[26]  C. Domain,et al.  Recent advances in modeling and simulation of the exposure and response of tungsten to fusion energy conditions , 2017 .

[27]  Donald W. Brenner,et al.  Three decades of many-body potentials in materials research , 2012 .

[28]  Steven J. Plimpton,et al.  Highly scalable discrete-particle simulations with novel coarse-graining: accessing the microscale , 2018 .

[29]  Noam Bernstein,et al.  Machine Learning a General-Purpose Interatomic Potential for Silicon , 2018, Physical Review X.

[30]  R. Felton,et al.  Fuel retention studies with the ITER-Like Wall in JET , 2013 .

[31]  Aidan P Thompson,et al.  Extending the accuracy of the SNAP interatomic potential form. , 2017, The Journal of chemical physics.

[32]  J. Roth,et al.  Binary beryllium-tungsten mixed materials , 2007 .

[33]  H. Chatley Cohesion , 1921, Nature.

[34]  J. Behler Perspective: Machine learning potentials for atomistic simulations. , 2016, The Journal of chemical physics.

[35]  Chiho Kim,et al.  Machine learning in materials informatics: recent applications and prospects , 2017, npj Computational Materials.

[36]  D. Sánchez-Portal,et al.  The SIESTA method for ab initio order-N materials simulation , 2001, cond-mat/0111138.

[37]  Alexander V. Shapeev,et al.  Active learning of linearly parametrized interatomic potentials , 2016, 1611.09346.

[38]  Justin S. Smith,et al.  Hierarchical modeling of molecular energies using a deep neural network. , 2017, The Journal of chemical physics.

[39]  Christian Trott,et al.  Spectral neighbor analysis method for automated generation of quantum-accurate interatomic potentials , 2014, J. Comput. Phys..

[40]  A. Tikhonov,et al.  Numerical Methods for the Solution of Ill-Posed Problems , 1995 .

[41]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[42]  M C Payne,et al.  "Learn on the fly": a hybrid classical and quantum-mechanical molecular dynamics simulation. , 2004, Physical review letters.

[43]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[44]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[45]  Rampi Ramprasad,et al.  Machine Learning Force Fields: Construction, Validation, and Outlook , 2016, 1610.02098.

[46]  Kieron Burke,et al.  Guest Editorial: Special Topic on Data-Enabled Theoretical Chemistry. , 2018, The Journal of chemical physics.

[47]  Richard G. Hennig,et al.  Computational Search for Single-Layer Transition-Metal Dichalcogenide Photocatalysts , 2013 .

[48]  P. Barabaschi,et al.  Key ITER plasma edge and plasma–material interaction issues , 2003 .

[49]  R. Doerner The implications of mixed-material plasma-facing surfaces in ITER , 2007 .

[50]  Efficient index handling of multidimensional periodic boundary conditions , 2001, cond-mat/0104182.

[51]  A. Voter,et al.  Reflection and implantation of low energy helium with tungsten surfaces , 2014, 1401.2183.

[52]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[53]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[54]  K. Nordlund,et al.  Atomistic simulations of Be irradiation on W: mixed layer formation and erosion , 2014 .

[55]  Zhenwei Li,et al.  Molecular dynamics with on-the-fly machine learning of quantum-mechanical forces. , 2015, Physical review letters.

[56]  Murray S. Daw,et al.  The embedded-atom method: a review of theory and applications , 1993 .

[57]  Michele Parrinello,et al.  Generalized neural-network representation of high-dimensional potential-energy surfaces. , 2007, Physical review letters.

[58]  C. H. Skinner,et al.  Plasma{material interactions in current tokamaks and their implications for next step fusion reactors , 2001 .

[59]  K. Nordlund,et al.  The effect of beryllium on deuterium implantation in tungsten by atomistic simulations , 2014 .

[60]  Gábor Csányi,et al.  Accuracy and transferability of Gaussian approximation potential models for tungsten , 2014 .

[61]  Muratahan Aykol,et al.  Materials Design and Discovery with High-Throughput Density Functional Theory: The Open Quantum Materials Database (OQMD) , 2013 .

[62]  K-R Müller,et al.  SchNet - A deep learning architecture for molecules and materials. , 2017, The Journal of chemical physics.

[63]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[64]  J. Ziegler,et al.  SRIM – The stopping and range of ions in matter (2010) , 2010 .

[65]  Brian D. Wirth,et al.  Interatomic potentials for simulation of He bubble formation in W , 2013 .

[66]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[67]  A. Thompson,et al.  Computational aspects of many-body potentials , 2012 .

[68]  R. Causey,et al.  Beryllium-tungsten mixed-material interactions , 2005 .