Control issues to improve visual control of motion: applications in active tracking of moving targets

This paper deals with active tracking of 3D moving targets. Tracking is based on different visual behaviors, namely smooth pursuit and vergence control. The performance and robustness in visual control of motion depends both on the vision algorithms and the control structure. In this work we evaluate these two aspects, characterize the delays, and discuss ways to cope with latency while improving system performance. Kalman filtering is used to achieve smooth behaviors and increase visual processing robustness. A specific Kalman filter structure is proposed and its tuning and initialization are discussed. Delays and system latencies substantially affect the performance of visually guided systems. Interpolation is used to cope with visual processing delays. Model predictive control strategies are proposed to compensate for the mechanical latency in visual control of motion.

[1]  William J. Wilson,et al.  Relative end-effector control using Cartesian position based visual servoing , 1996, IEEE Trans. Robotics Autom..

[2]  Takeo Kanade,et al.  Visual tracking of a moving target by a camera mounted on a robot: a combination of control and vision , 1993, IEEE Trans. Robotics Autom..

[3]  Huosheng Hu,et al.  Visual Guidance of an AGV , 1996 .

[4]  Helder Araújo,et al.  Control performance issues in a binocular active vision system , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[5]  Peter I. Corke,et al.  Dynamic effects in visual closed-loop systems , 1996, IEEE Trans. Robotics Autom..

[6]  Peter Corke,et al.  VISUAL CONTROL OF ROBOT MANIPULATORS – A REVIEW , 1993 .

[7]  Helder Araújo,et al.  Improving 3D Active Visual Tracking , 1999, ICVS.

[8]  David W. Murray,et al.  Delays versus performance of visually guided systems , 1996 .

[9]  Giulio Sandini,et al.  Robust visual servoing in 3-D reaching tasks , 1996, IEEE Trans. Robotics Autom..

[10]  Peter I. Corke,et al.  A tutorial on visual servo control , 1996, IEEE Trans. Robotics Autom..

[11]  Gregory D. Hager,et al.  Evaluation of the Robustness of Visual Behaviors through Performance Characterization , 2000 .

[12]  Peter K. Allen,et al.  Automated tracking and grasping of a moving object with a robotic hand-eye system , 1993, IEEE Trans. Robotics Autom..

[13]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[14]  James L. Crowley,et al.  Integration and control of reactive visual processes , 1994, Robotics Auton. Syst..

[15]  Markus Vincze,et al.  Performance evaluation of vision-based control tasks , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[16]  Jorge Batista,et al.  Evaluation of the Robustness of Visual Behaviors through Performance Characterization , 1998 .

[17]  Gerd Hirzinger,et al.  Real-time visual tracking of 3D objects with dynamic handling of occlusion , 1997, Proceedings of International Conference on Robotics and Automation.

[18]  Reinhold Behringer,et al.  The seeing passenger car 'VaMoRs-P' , 1994, Proceedings of the Intelligent Vehicles '94 Symposium.

[19]  Hans-Hellmut Nagel,et al.  Towards visually servoed manipulation of car engine parts , 1997, Proceedings of International Conference on Robotics and Automation.

[20]  Peter Corke,et al.  Visual Control of Robots: High-Performance Visual Servoing , 1996 .

[21]  David W. Clarke,et al.  Generalized Predictive Control - Part II Extensions and interpretations , 1987, Autom..

[22]  Christopher Brown,et al.  Gaze controls with interactions and decays , 1989, IEEE Trans. Syst. Man Cybern..

[23]  Daniel E. Koditschek,et al.  An active visual estimator for dexterous manipulation , 1996, IEEE Trans. Robotics Autom..

[24]  Henrik I. Christensen,et al.  A Control Theoretical Approach to Active Vision , 1995, ACCV.