Numerical calculation of the base inertial parameters of robots

An approach to the problem of determining the minimum set of inertial parameters of robots is presented. The calculation is based on numerical QR and singular value decomposition factorizations and on scaling of matrices. It proceeds in two steps: the number of base parameters is determined, and a set of base parameters is determined by eliminating some standard parameters which are regrouped with some others in linear relations. Different models, linear in the inertial parameters, are used: a complete dynamic model, a simplified dynamic model, and an energy model. The method is general. It can be applied to open-loop or graph-structured robots. The algorithms are easy to implement. An application for the PUMA 560 robot is given.<<ETX>>

[1]  Michael W. Walker,et al.  Basis sets for manipulator inertial parameters , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[2]  Koichi Osuka,et al.  Base parameters of manipulator dynamic models , 1990, IEEE Trans. Robotics Autom..

[3]  Wisama Khalil,et al.  Minimum operations and minimum parameters of the dynamic models of tree structure robots , 1987, IEEE Journal on Robotics and Automation.

[4]  Fouad Bennis,et al.  Minimum inertial parameters of robots with parallelogram closed-loops , 1990, Proceedings., IEEE International Conference on Robotics and Automation.

[5]  Koji Yoshida,et al.  Base parameters of dynamic models for manipulators with rotational and translational joints , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[6]  Wisama Khalil,et al.  A new geometric notation for open and closed-loop robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[7]  Wisama Khalil,et al.  A direct determination of minimum inertial parameters of robots , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[8]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[9]  A. Laub,et al.  The singular value decomposition: Its computation and some applications , 1980 .

[10]  Wisama Khalil,et al.  Reducing the computational burden of the dynamic models of robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[11]  Christopher G. Atkeson,et al.  Estimation of Inertial Parameters of Manipulator Loads and Links , 1986 .

[12]  Wisama Khalil,et al.  Identification of the minimum inertial parameters of robots , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[13]  Wisama Khalil,et al.  Direct calculation of minimum set of inertial parameters of serial robots , 1990, IEEE Trans. Robotics Autom..

[14]  Oussama Khatib,et al.  The explicit dynamic model and inertial parameters of the PUMA 560 arm , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.