Low pH-range control of McKibben polymeric artificial muscles

[1]  Youwen Lin,et al.  Preparation and characterization of N-(2-carboxybenzyl)chitosan as a potential pH-sensitive hydrogel for drug delivery. , 2007, Carbohydrate research.

[2]  F. D. Prez,et al.  Fast, multi-responsive microgels based on photo-crosslinkable poly(2-(dimethylamino)ethyl methacrylate) , 2004 .

[3]  H. Kim,et al.  Shape change characteristics of polymer hydrogel based on polyacrylic acid/poly(vinyl sulfonic acid) in electric fields , 2004 .

[4]  Kwang J. Kim,et al.  Polyacrylonitrile linear actuators: Chemomechanical and electro-chemomechanical properties , 2006 .

[5]  Pierre Lopez,et al.  Modeling and control of McKibben artificial muscle robot actuators , 2000 .

[6]  Xiyang Sun,et al.  Preparation and characterization of a novel pH-sensitive ion exchange resin. , 2005, Chemical & pharmaceutical bulletin.

[7]  Bertrand Tondu,et al.  A pH-activated artificial muscle using the McKibben-type braided structure , 2009 .

[8]  E. Vasheghani-Farahani,et al.  Swelling behavior, mechanical properties and network parameters of pH- and temperature-sensitive hydrogels of poly((2-dimethyl amino) ethyl methacrylate-co-butyl methacrylate) , 2007 .

[9]  A. Pourjavadi,et al.  Modified chitosan 4. Superabsorbent hydrogels from poly(acrylic acid-co-acrylamide) grafted chitosan with salt- and pH-responsiveness properties , 2004 .

[10]  A. Katchalsky Rapid swelling and deswelling of reversible gels of polymeric acids by ionization , 1949, Experientia.

[11]  Kwang Min Shin,et al.  Electrochemical actuation in chitosan/polyaniline microfibers for artificial muscles fabricated using an in situ polymerization , 2008 .

[12]  Maria Bassil,et al.  Electrochemical properties and actuation mechanisms of polyacrylamide hydrogel for artificial muscle application , 2008 .

[13]  Darwin G. Caldwell,et al.  Bio-mimetic actuators: polymeric Pseudo Muscular Actuators and pneumatic Muscle Actuators for biological emulation , 2000 .

[14]  J. Nam,et al.  Electrospun nanoscale polyacrylonitrile artificial muscle , 2006 .

[15]  Mohsen Shahinpoor,et al.  Contraction/elongation behavior of cation-modified polyacrylonitrile fibers , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[16]  J. Madden,et al.  Polymer artificial muscles , 2007 .

[17]  W. Kuhn,et al.  Reversible Dilation and Contraction by Changing the State of Ionization of High-Polymer Acid Networks , 1950, Nature.

[18]  M. Jassal,et al.  Effect of copolymer architecture on the response of pH sensitive fibers based on acrylonitrile and acrylic acid , 2007 .

[19]  David Brock,et al.  A Dynamic Model of a Linear Actuator Based on Polymer Hydrogel , 1994 .