Learning Label-Specific Features and Class-Dependent Labels for Multi-Label Classification

Binary Relevance is a well-known framework for multi-label classification, which considers each class label as a binary classification problem. Many existing multi-label algorithms are constructed within this framework, and utilize identical data representation in the discrimination of all the class labels. In multi-label classification, however, each class label might be determined by some specific characteristics of its own. In this paper, we seek to learn label-specific data representation for each class label, which is composed of label-specific features. Our proposed method LLSF can not only be utilized for multi-label classification directly, but also be applied as a feature selection method for multi-label learning and a general strategy to improve multi-label classification algorithms comprising a number of binary classifiers. Inspired by the research works on modeling high-order label correlations, we further extend LLSF to learn class-Dependent Labels in a sparse stackingway, denoted as LLSF-DL. It incorporates both second-order- and high-order label correlations. A comparative study with the state-of-the-art approaches manifests the effectiveness and efficiency of our proposed methods.

[1]  Xu-Ying Liu,et al.  Towards Class-Imbalance Aware Multi-Label Learning , 2015, IEEE Transactions on Cybernetics.

[2]  Rong Jin,et al.  Correlated Label Propagation with Application to Multi-label Learning , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  Hsuan-Tien Lin,et al.  Multilabel Classification with Principal Label Space Transformation , 2012, Neural Computation.

[4]  David A. Forsyth,et al.  Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary , 2002, ECCV.

[5]  Grigorios Tsoumakas,et al.  Random K-labelsets for Multilabel Classification , 2022 .

[6]  Gustavo E. A. P. A. Batista,et al.  Class imbalance revisited: a new experimental setup to assess the performance of treatment methods , 2014, Knowledge and Information Systems.

[7]  Geoff Holmes,et al.  Classifier chains for multi-label classification , 2009, Machine Learning.

[8]  Jiebo Luo,et al.  Learning multi-label scene classification , 2004, Pattern Recognit..

[9]  Eyke Hüllermeier,et al.  Bayes Optimal Multilabel Classification via Probabilistic Classifier Chains , 2010, ICML.

[10]  David A. Forsyth,et al.  Matching Words and Pictures , 2003, J. Mach. Learn. Res..

[11]  Kun Zhang,et al.  Multi-label learning by exploiting label dependency , 2010, KDD.

[12]  Xindong Wu,et al.  Learning Label Specific Features for Multi-label Classification , 2015, 2015 IEEE International Conference on Data Mining.

[13]  Tat-Seng Chua,et al.  NUS-WIDE: a real-world web image database from National University of Singapore , 2009, CIVR '09.

[14]  Zhi-Hua Zhou,et al.  Multi-Label Learning by Exploiting Label Correlations Locally , 2012, AAAI.

[15]  Eyke Hüllermeier,et al.  Multilabel classification via calibrated label ranking , 2008, Machine Learning.

[16]  Min-Ling Zhang,et al.  A Review on Multi-Label Learning Algorithms , 2014, IEEE Transactions on Knowledge and Data Engineering.

[17]  Philip S. Yu,et al.  Under Consideration for Publication in Knowledge and Information Systems Gmlc: a Multi-label Feature Selection Framework for Graph Classification , 2011 .

[18]  Khalid Benabdeslem,et al.  Soft-constrained Laplacian score for semi-supervised multi-label feature selection , 2015, Knowledge and Information Systems.

[19]  Concha Bielza,et al.  Bayesian Chain Classifiers for Multidimensional Classification , 2011, IJCAI.

[20]  Xiaoli Z. Fern,et al.  Context-aware MIML instance annotation: exploiting label correlations with classifier chains , 2015, Knowledge and Information Systems.

[21]  François Laviolette,et al.  Domain-Adversarial Training of Neural Networks , 2015, J. Mach. Learn. Res..

[22]  Eyke Hüllermeier,et al.  Dependent binary relevance models for multi-label classification , 2014, Pattern Recognit..

[23]  Miroslav Kubat,et al.  PruDent: A Pruned and Confident Stacking Approach for Multi-Label Classification , 2015, IEEE Transactions on Knowledge and Data Engineering.

[24]  Luca Martino,et al.  Efficient monte carlo methods for multi-dimensional learning with classifier chains , 2012, Pattern Recognit..

[25]  Charles Elkan,et al.  Beam search algorithms for multilabel learning , 2013, Machine Learning.

[26]  Jieping Ye,et al.  Learning incoherent sparse and low-rank patterns from multiple tasks , 2010, KDD.

[27]  John Langford,et al.  Multi-Label Prediction via Compressed Sensing , 2009, NIPS.

[28]  Grigorios Tsoumakas,et al.  Multi-Label Classification of Music into Emotions , 2008, ISMIR.

[29]  Tao Mei,et al.  Correlative multi-label video annotation , 2007, ACM Multimedia.

[30]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[31]  Grigorios Tsoumakas,et al.  Multi-target regression via input space expansion: treating targets as inputs , 2012, Machine Learning.

[32]  Haojie Li,et al.  Multi-Label Image Categorization With Sparse Factor Representation , 2014, IEEE Transactions on Image Processing.

[33]  Zhi-Hua Zhou,et al.  Multilabel Neural Networks with Applications to Functional Genomics and Text Categorization , 2006, IEEE Transactions on Knowledge and Data Engineering.

[34]  Qingming Huang,et al.  Group sensitive Classifier Chains for multi-label classification , 2015, 2015 IEEE International Conference on Multimedia and Expo (ICME).

[35]  Jiayu Zhou,et al.  Integrating low-rank and group-sparse structures for robust multi-task learning , 2011, KDD.

[36]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[37]  Qiang Yang,et al.  Music Emotion Recognition by Multi-label Multi-layer Multi-instance Multi-view Learning , 2014, ACM Multimedia.

[38]  Zhi-Hua Zhou,et al.  Multilabel dimensionality reduction via dependence maximization , 2008, TKDD.

[39]  Hsuan-Tien Lin,et al.  Feature-aware Label Space Dimension Reduction for Multi-label Classification , 2012, NIPS.

[40]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[41]  Grigorios Tsoumakas,et al.  Multilabel Text Classification for Automated Tag Suggestion , 2008 .

[42]  Yiming Yang,et al.  RCV1: A New Benchmark Collection for Text Categorization Research , 2004, J. Mach. Learn. Res..

[43]  Josef Kittler,et al.  Inverse random under sampling for class imbalance problem and its application to multi-label classification , 2012, Pattern Recognit..

[44]  James T. Kwok,et al.  Bayes-Optimal Hierarchical Multilabel Classification , 2015, IEEE Transactions on Knowledge and Data Engineering.

[45]  Jieping Ye,et al.  Extracting shared subspace for multi-label classification , 2008, KDD.

[46]  Geoff Holmes,et al.  MEKA: A Multi-label/Multi-target Extension to WEKA , 2016, J. Mach. Learn. Res..

[47]  Grigorios Tsoumakas,et al.  Mining Multi-label Data , 2010, Data Mining and Knowledge Discovery Handbook.

[48]  Ali Jalali,et al.  A Dirty Model for Multi-task Learning , 2010, NIPS.

[49]  Grigorios Tsoumakas,et al.  Protein Classification with Multiple Algorithms , 2005, Panhellenic Conference on Informatics.

[50]  Gert R. G. Lanckriet,et al.  Semantic Annotation and Retrieval of Music and Sound Effects , 2008, IEEE Transactions on Audio, Speech, and Language Processing.

[51]  Lei Wu,et al.  Lift: Multi-Label Learning with Label-Specific Features , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[52]  Xindong Wu,et al.  Compressed labeling on distilled labelsets for multi-label learning , 2012, Machine Learning.

[53]  Janez Demsar,et al.  Statistical Comparisons of Classifiers over Multiple Data Sets , 2006, J. Mach. Learn. Res..

[54]  Eric P. Xing,et al.  A multivariate regression approach to association analysis of a quantitative trait network , 2008, Bioinform..

[55]  Min-Ling Zhang,et al.  Lift: Multi-Label Learning with Label-Specific Features , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Grigorios Tsoumakas,et al.  Dealing with Concept Drift and Class Imbalance in Multi-Label Stream Classification , 2011, IJCAI.

[57]  Jianmin Wang,et al.  Multi-label Classification via Feature-aware Implicit Label Space Encoding , 2014, ICML.

[58]  Gita Reese Sukthankar,et al.  Multi-label relational neighbor classification using social context features , 2013, KDD.