Further properties of the forward–backward envelope with applications to difference-of-convex programming

[1]  Jorge Nocedal,et al.  A family of second-order methods for convex $$\ell _1$$ℓ1-regularized optimization , 2016, Math. Program..

[2]  Panagiotis Patrinos,et al.  Forward–backward quasi-Newton methods for nonsmooth optimization problems , 2016, Computational Optimization and Applications.

[3]  Z. Wen,et al.  Semi-Smooth Second-order Type Methods for Composite Convex Programs , 2016 .

[4]  Michael P. Friedlander,et al.  Efficient evaluation of scaled proximal operators , 2016, ArXiv.

[5]  Guoyin Li,et al.  Calculus of the Exponent of Kurdyka–Łojasiewicz Inequality and Its Applications to Linear Convergence of First-Order Methods , 2016, Foundations of Computational Mathematics.

[6]  Anthony Man-Cho So,et al.  A unified approach to error bounds for structured convex optimization problems , 2015, Mathematical Programming.

[7]  Jack Xin,et al.  Minimization of ℓ1-2 for Compressed Sensing , 2015, SIAM J. Sci. Comput..

[8]  Ting Kei Pong,et al.  Penalty Methods for a Class of Non-Lipschitz Optimization Problems , 2014, SIAM J. Optim..

[9]  Michael Ulbrich,et al.  A Semismooth Newton Method with Multidimensional Filter Globalization for l1-Optimization , 2014, SIAM J. Optim..

[10]  Jieping Ye,et al.  A General Iterative Shrinkage and Thresholding Algorithm for Non-convex Regularized Optimization Problems , 2013, ICML.

[11]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[12]  Michael A. Saunders,et al.  Proximal Newton-Type Methods for Minimizing Composite Functions , 2012, SIAM J. Optim..

[13]  Wen Song,et al.  The Moreau envelope function and proximal mapping in the sense of the Bregman distance , 2012 .

[14]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[15]  Yong Zhang,et al.  An alternating direction method for finding Dantzig selectors , 2010, Comput. Stat. Data Anal..

[16]  Paul Tseng,et al.  Approximation accuracy, gradient methods, and error bound for structured convex optimization , 2010, Math. Program..

[17]  Paul Tseng,et al.  A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training , 2010, Comput. Optim. Appl..

[18]  Cun-Hui Zhang Nearly unbiased variable selection under minimax concave penalty , 2010, 1002.4734.

[19]  M. Ng,et al.  A Coordinate Gradient Descent Method for Nonsmooth , 2009 .

[20]  Paul Tseng,et al.  A coordinate gradient descent method for nonsmooth separable minimization , 2008, Math. Program..

[21]  Hédy Attouch,et al.  On the convergence of the proximal algorithm for nonsmooth functions involving analytic features , 2008, Math. Program..

[22]  Stephen J. Wright,et al.  Sparse Reconstruction by Separable Approximation , 2008, IEEE Transactions on Signal Processing.

[23]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[24]  D. Lorenz,et al.  A semismooth Newton method for Tikhonov functionals with sparsity constraints , 2007, 0709.3186.

[25]  Adrian S. Lewis,et al.  The [barred L]ojasiewicz Inequality for Nonsmooth Subanalytic Functions with Applications to Subgradient Dynamical Systems , 2006, SIAM J. Optim..

[26]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[27]  Heinz H. Bauschke,et al.  Bregman Monotone Optimization Algorithms , 2003, SIAM J. Control. Optim..

[28]  M. Teboulle,et al.  Asymptotic cones and functions in optimization and variational inequalities , 2002 .

[29]  Jianqing Fan,et al.  Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties , 2001 .

[30]  Paul Tseng,et al.  On the Convergence Rate of Dual Ascent Methods for Linearly Constrained Convex Minimization , 1993, Math. Oper. Res..

[31]  Z.-Q. Luo,et al.  Error bounds and convergence analysis of feasible descent methods: a general approach , 1993, Ann. Oper. Res..

[32]  P. Tseng,et al.  On the linear convergence of descent methods for convex essentially smooth minimization , 1992 .

[33]  Yingnan Wang New Improved Penalty Methods for Sparse Reconstruction Based on Difference of Two Norms , 2015 .

[34]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[35]  Alberto Bemporad,et al.  Proximal Newton methods for convex composite optimization , 2013, 52nd IEEE Conference on Decision and Control.

[36]  D. Noll,et al.  Convergence of Linesearch and Trust-Region Methods Using the Kurdyka–Łojasiewicz Inequality , 2013 .

[37]  Gitta Kutyniok Compressed Sensing , 2012 .

[38]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[39]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .