Group additivity-Pourbaix diagrams advocate thermodynamically stable nanoscale clusters in aqueous environments

The characterization of water-based corrosion, geochemical, environmental and catalytic processes rely on the accurate depiction of stable phases in a water environment. The process is aided by Pourbaix diagrams, which map the equilibrium solid and solution phases under varying conditions of pH and electrochemical potential. Recently, metastable or possibly stable nanometric aqueous clusters have been proposed as intermediate species in non-classical nucleation processes. Herein, we describe a Group Additivity approach to obtain Pourbaix diagrams with full consideration of multimeric cluster speciation from computations. Comparisons with existing titration results from experiments yield excellent agreement. Applying this Group Additivity-Pourbaix approach to Group 13 elements, we arrive at a quantitative evaluation of cluster stability, as a function of pH and concentration, and present compelling support for not only metastable but also thermodynamically stable multimeric clusters in aqueous solutions.

[1]  L. Zakharov,et al.  Aqueous formation and manipulation of the iron-oxo Keggin ion , 2015, Science.

[2]  P. Bomans,et al.  The Initial Stages of Template-Controlled CaCO3 Formation Revealed by Cryo-TEM , 2009, Science.

[3]  Kristin A. Persson,et al.  Prediction of solid-aqueous equilibria: Scheme to combine first-principles calculations of solids with experimental aqueous states , 2012 .

[4]  Wei Chen,et al.  Nucleation of metastable aragonite CaCO3 in seawater , 2015, Proceedings of the National Academy of Sciences.

[5]  J. Banfield,et al.  Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM , 2014, Microscopy and Microanalysis.

[6]  L. Cronin,et al.  Investigating the Transformations of Polyoxoanions Using Mass Spectrometry and Molecular Dynamics , 2016, Journal of the American Chemical Society.

[7]  P. van der Schoot,et al.  Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate , 2013, Nature Communications.

[8]  W. Casey,et al.  Reaction Dynamics, Molecular Clusters, and Aqueous Geochemistry , 2007 .

[9]  Zachary L. Mensinger,et al.  Oligomeric Group 13 Hydroxide Compounds — A Rare But Varied Class of Molecules , 2012 .

[10]  Matthew R. Shaner,et al.  Mechanistic insights into chemical and photochemical transformations of bismuth vanadate photoanodes , 2016, Nature Communications.

[11]  L. Zakharov,et al.  Electrolytic synthesis of aqueous aluminum nanoclusters and in situ characterization by femtosecond Raman spectroscopy and computations , 2013, Proceedings of the National Academy of Sciences.

[12]  S. Aloni,et al.  In situ TEM imaging of CaCO3 nucleation reveals coexistence of direct and indirect pathways , 2014, Science.

[13]  C. Raston,et al.  Selective isolation of Keggin ions using self-assembled superanion capsules† , 1999 .

[14]  P. Fratzl,et al.  Nucleation and growth of magnetite from solution. , 2013, Nature materials.

[15]  A. D. Bain,et al.  Aging processes of alumina sol-gels: characterization of new aluminum polyoxycations by aluminum-27 NMR spectroscopy , 1991 .

[16]  A. Kjekshus,et al.  On the Crystal Structure of Some Basic Aluminium Salts. , 1960 .

[17]  S. Hayes,et al.  Synthesis of the Hydroxide Cluster [Al13(μ3‐OH)6(μ‐OH)18 (H2O)24]15+ from an Aqueous Solution. , 2011 .

[18]  W. Casey,et al.  A new aluminum hydroxide octamer, [Al8(OH)14(H2O)18](SO4)5 x 16H2O. , 2005, Inorganic chemistry.

[19]  R. Yokel Brain uptake, retention, and efflux of aluminum and manganese. , 2002, Environmental health perspectives.

[20]  L. Öhman,et al.  Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution. 33. The Al(methylmalonate)(2)(H2O)(2)(-) complex crystallised as a double salt with Al(H2O)(6)(3+) and Cl- , 1998 .

[21]  Determination of the three-dimensional structure of ferrihydrite nanoparticle aggregates. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[22]  L. L. Pesterfield,et al.  The Aqueous Chemistry of the Elements , 2010 .

[23]  T. Alam,et al.  Enhanced water purification: a single atom makes a difference. , 2009, Environmental science & technology.

[24]  M. Frisch,et al.  Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields , 1994 .

[25]  A. Navrotsky Energetic clues to pathways to biomineralization: precursors, clusters, and nanoparticles. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Golden,et al.  Additivity rules for the estimation of thermochemical properties , 1969 .

[27]  E. Tiferet,et al.  The energy landscape of uranyl-peroxide species. , 2014, Chemistry.

[28]  B. Keppler,et al.  Gallium in cancer treatment. , 2002, Critical reviews in oncology/hematology.

[29]  S. Bradley,et al.  Detection of a new polymeric species formed through the hydrolysis of gallium(III) salt solutions , 1990 .

[30]  S. Hayes,et al.  Synthesis of the hydroxide cluster [Al13(μ3-OH)6(μ-OH)18(H2O)24]15+ from an aqueous solution. , 2011, Inorganic chemistry.

[31]  Helmut Cölfen,et al.  Stable Prenucleation Calcium Carbonate Clusters , 2008, Science.

[32]  A. Beale,et al.  Unraveling the crystallization mechanism of CoAPO-5 molecular sieves under hydrothermal conditions. , 2005, Journal of the American Chemical Society.

[33]  A. Gil,et al.  Relationship between the Surface Properties and the Catalytic Performance of Al-, Ga-, and AlGa-Pillared Saponites , 2009 .

[34]  Lennart Bergström,et al.  Pre-nucleation clusters as solute precursors in crystallisation. , 2014, Chemical Society reviews.

[35]  D. Keszler,et al.  Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics , 2007 .

[36]  L. Öhman,et al.  Equilibrium and structural studies of silicon(IV) and aluminium(III) in aqueous solution—10. A potentiometric study of aluminium(III) pyrocatecholates and aluminium(III) hydroxo pyrocatecholates in 0.6 M Na(Cl) , 1983 .

[37]  S. Benson,et al.  Additivity Rules for the Estimation of Molecular Properties. Thermodynamic Properties , 1958 .

[38]  Douglas G. Brookins,et al.  Eh-PH diagrams for geochemistry , 1988 .

[39]  Carles Bo,et al.  Polyoxometalates in Solution: Molecular Dynamics Simulations on the α-PW12O403- Keggin Anion in Aqueous Media , 2005 .

[40]  R. Hennig,et al.  Computational Screening of 2D Materials for Photocatalysis. , 2015, The journal of physical chemistry letters.

[41]  M. Pourbaix Atlas of Electrochemical Equilibria in Aqueous Solutions , 1974 .

[42]  W. Casey,et al.  Energetics of Al13 Keggin cluster compounds , 2011, Proceedings of the National Academy of Sciences.

[43]  Anubhav Jain,et al.  First-principles study of electronic structure and photocatalytic properties of MnNiO3 as an alkaline oxygen-evolution photocatalyst. , 2015, Chemical communications.

[44]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[45]  John M. Gregoire,et al.  Mn 2 V 2 O 7 : An Earth Abundant Light Absorber for Solar Water Splitting , 2015 .

[46]  J. Gregoire,et al.  Mn2V2O7: An Earth Abundant Light Absorber for Solar Water Splitting , 2015 .

[47]  J. Tomasi,et al.  The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level , 1999 .

[48]  Taeghwan Hyeon,et al.  Nonclassical nucleation and growth of inorganic nanoparticles , 2016 .