Parallel Wavefront Algorithms Solving Lyapunov Equations for the Cholesky Factor on Message Passing Multiprocessors

In this paper new parallel algorithms to solve the Lyapunov equations for the Cholesky factor using Hammarling's method on message passing multiprocessors are described. These algorithms are based on previous work carried out on the parallel solution of triangular linear systems by using row block data distribution and a wavefront of antidiagonals. The algorithms are theoretically analyzed and experimental results obtained on an SGI Power Challenge and a Cray T3D are presented.

[1]  Sven Hammarling,et al.  Numerical solution of the discrete-time, convergent, non-negative definite Lyapunov equation , 1991 .

[2]  Michael T. Heath,et al.  Parallel solution of triangular systems on distributed-memory multiprocessors , 1988 .

[3]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[4]  James M. Ortega,et al.  Parallel solution of triangular systems of equations , 1988, Parallel Comput..

[5]  Clifford T. Mullis,et al.  Synthesis of minimum roundoff noise fixed point digital filters , 1976 .

[6]  S. Hammarling Numerical Solution of the Stable, Non-negative Definite Lyapunov Equation , 1982 .

[7]  Kameshwar Poolla,et al.  Parallel Solution of Large Lyapunov Equations* , 2022 .

[8]  Alan J. Laub,et al.  Computation of "Balancing" transformations , 1980 .

[9]  Dianne P. O'Leary,et al.  Data-flow algorithms for parallel matrix computation , 1985, CACM.

[10]  David J. Evans,et al.  The Parallel Solution of Triangular Systems of Equations , 1983, IEEE Transactions on Computers.

[11]  Christian H. Bischof,et al.  The WY representation for products of householder matrices , 1985, PPSC.

[12]  Richard H. Bartels,et al.  Algorithm 432 [C2]: Solution of the matrix equation AX + XB = C [F4] , 1972, Commun. ACM.

[13]  L. Silverman,et al.  Model reduction via balanced state space representations , 1982 .

[14]  Kemin Zhou,et al.  Frequency-weighted 𝓛∞ norm and optimal Hankel norm model reduction , 1995, IEEE Trans. Autom. Control..

[15]  Thomas F. Coleman,et al.  A parallel triangular solver for distributed-memory multiprocessor , 1988 .

[16]  James Demmel,et al.  On a Block Implementation of Hessenberg Multishift QR Iteration , 1989, Int. J. High Speed Comput..

[17]  K. Glover All optimal Hankel-norm approximations of linear multivariable systems and their L, ∞ -error bounds† , 1984 .

[18]  K. Zhou Frequency-weighted L_∞ nomn and optimal Hankel norm model reduction , 1995 .

[19]  A. Laub,et al.  Computation of system balancing transformations and other applications of simultaneous diagonalization algorithms , 1987 .

[20]  Enrique S. Quintana-Ortí,et al.  Solving Discrete-Time Lyapunov Equations for the Cholesky Factor on a Shared Memory Multiprocessor , 1996, Parallel Process. Lett..

[21]  Thomas F. Coleman,et al.  A New Method for Solving Triangular Systems on Distributed Memory Message-Passing Multiprocessors , 1989 .

[22]  G. Golub,et al.  A Hessenberg-Schur method for the problem AX + XB= C , 1979 .

[23]  B. Moore Principal component analysis in linear systems: Controllability, observability, and model reduction , 1981 .

[24]  Bo Kågström,et al.  Distributed Block Algorithms for the Triangular Sylvester Equation with Condition Estimator , 1989, PPSC.