Characterisation of lithium-ion battery anodes fabricated via in-situ Cu6Sn5 growth on a copper current collector

[1]  R. Huggins,et al.  Chemical diffusion in intermediate phases in the lithium-tin system , 1980 .

[2]  R. Huggins,et al.  Thermodynamic Study of the Lithium‐Tin System , 1981 .

[3]  Kazunori Ozawa,et al.  Lithium-ion rechargeable batteries with LiCoO2 and carbon electrodes: the LiCoO2/C system , 1994 .

[4]  M. Thackeray,et al.  Copper-tin anodes for rechargeable lithium batteries : an example of the matrix effect in an intermetallic system. , 1998 .

[5]  John T. Vaughey,et al.  Li x Cu6Sn5 ( 0 < x < 13 ) : An Intermetallic Insertion Electrode for Rechargeable Lithium Batteries , 1999 .

[6]  Michael M. Thackeray,et al.  Li{sub x}Cu{sub 6}Sn{sub 5} (0 , 1999 .

[7]  Martin Winter,et al.  Electrochemical lithiation of tin and tin-based intermetallics and composites , 1999 .

[8]  J. Dahn,et al.  In Situ X‐Ray Study of the Electrochemical Reaction of Li with η ′ ‐ Cu6Sn5 , 2000 .

[9]  K. Edström,et al.  Structural Transformations in Lithiated η′-Cu6Sn5 Electrodes Probed by In Situ Mössbauer Spectroscopy and X-Ray Diffraction , 2002 .

[10]  W. Behl,et al.  Nano-scale Cu6Sn5 anodes , 2002 .

[11]  T. Yokoshima,et al.  Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries , 2003 .

[12]  Diana Golodnitsky,et al.  SEI ON LITHIUM, GRAPHITE, DISORDERED CARBONS AND TIN-BASED ALLOYS , 2004 .

[13]  G.Y. Li,et al.  An investigation of effects of Sb on the intermetallic formation in Sn-3.5Ag-0.7Cu solder joints , 2005, IEEE Transactions on Components and Packaging Technologies.

[14]  Heon-Cheol Shin,et al.  Three‐Dimensional Porous Copper–Tin Alloy Electrodes for Rechargeable Lithium Batteries , 2005 .

[15]  Kazuaki Ano,et al.  Kirkendall void formation in eutectic SnPb solder joints on bare Cu and its effect on joint reliability , 2005 .

[16]  J. Read,et al.  Chemistry and Structure of Sony's Nexelion Li-ion Electrode Materials , 2006 .

[17]  T. Tunkasiri,et al.  Solution route synthesis of dendrite Cu6Sn5 powders, anode material for lithium-ion batteries , 2006 .

[18]  R. Dedryvère,et al.  XPS study of electrode/electrolyte interfaces of η-Cu6Sn5 electrodes in Li-ion batteries , 2007 .

[19]  J. Tarascon,et al.  Mössbauer spectra as a “fingerprint” in tin–lithium compounds: Applications to Li-ion batteries , 2007 .

[20]  R. Dedryvère,et al.  Ni3Sn4 Electrodes for Li-Ion Batteries: Li−Sn Alloying Process and Electrode/Electrolyte Interface Phenomena , 2008 .

[21]  J. Dahn,et al.  Comparison of Thermal Stability Between Lithiated Sn30Co30C40, LiSi, or Li0.81C6 and 1 M LiPF6 EC:DEC Electrolyte at High Temperature , 2008 .

[22]  K. Nogita,et al.  Nickel-stabilized hexagonal (Cu,Ni)6Sn5 in Sn-Cu-Ni lead-free solder alloys , 2008 .

[23]  Y. Kang,et al.  Electrochemical properties of Cu6Sn5 alloy powders directly prepared by spray pyrolysis , 2009 .

[24]  K. Nogita,et al.  Cracking and phase stability in reaction layers between Sn-Cu-Ni solders and Cu substrates , 2009 .

[25]  R. Hu,et al.  Cyclic durable high-capacity Sn/Cu6Sn5 composite thin film anodes for lithium ion batteries prepared by electron-beam evaporation deposition , 2009 .

[26]  M. Thackeray,et al.  High-Capacity, Microporous Cu6Sn5 – Sn Anodes for Li-Ion Batteries , 2009 .

[27]  K. Nogita Stabilisation of Cu6Sn5 by Ni in Sn-0.7Cu-0.05Ni lead-free solder alloys , 2010 .

[28]  Ali Reza Kamali,et al.  TIN-BASED MATERIALS AS ADVANCED ANODE MATERIALS FOR LITHIUM ION BATTERIES: A REVIEW , 2011 .

[29]  H. Sheu,et al.  The phase transformations and cycling performance of copper–tin alloy anode materials synthesized by sputtering , 2011 .

[30]  Wenbo Liu,et al.  A three-dimensional tin-coated nanoporous copper for lithium-ion battery anodes , 2011 .

[31]  Dongwook Han,et al.  Electrochemical performances of Sn anode electrodeposited on porous Cu foam for Li-ion batteries , 2012 .

[32]  Han Huang,et al.  Growth orientations and mechanical properties of Cu6Sn5 and (Cu,Ni)6Sn5 on poly-crystalline Cu , 2012 .

[33]  Xianglong Li,et al.  The dimensionality of Sn anodes in Li-ion batteries , 2012 .

[34]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[35]  Yan Wang,et al.  Characteristic performance of SnO/Sn/Cu6Sn5 three-layer anode for Li-ion battery , 2013 .

[36]  Jun Lu,et al.  Nanocolumnar structured porous Cu-Sn thin film as anode material for lithium-ion batteries. , 2014, ACS applied materials & interfaces.

[37]  Gleb Yushin,et al.  High‐Capacity Anode Materials for Lithium‐Ion Batteries: Choice of Elements and Structures for Active Particles , 2014 .

[38]  J. Steiger Mechanisms of Dendrite Growth in Lithium Metal Batteries , 2015 .

[39]  Wei He,et al.  High capacity group-IV elements (Si, Ge, Sn) based anodes for Lithium-ion Batteries , 2015 .

[40]  B. Chowdari,et al.  Sn-based Intermetallic Alloy Anode Materials for the Application of Lithium Ion Batteries , 2015 .

[41]  N. Zhao,et al.  Growth kinetics of Cu6Sn5 intermetallic compound at liquid-solid interfaces in Cu/Sn/Cu interconnects under temperature gradient , 2015, Scientific Reports.

[42]  Feixiang Wu,et al.  Li-ion battery materials: present and future , 2015 .

[43]  B. Fang,et al.  Three-dimensional nanoporous Cu6Sn5/Cu composite from dealloying as anode for lithium ion batteries , 2016 .

[44]  H. Akbulut,et al.  Three-dimensional Sn rich Cu6Sn5 negative electrodes for Li ion batteries , 2016 .

[45]  Xiaobo Ji,et al.  Carbon Anode Materials for Advanced Sodium‐Ion Batteries , 2017 .

[46]  S. Majumder,et al.  A Novel Multiphase Sn-Sb-Cu Alloy Electrodeposited on 3D Interconnected Microporous Cu Current Collector as Negative Electrode for Lithium Ion Battery , 2017 .

[47]  H. Brand,et al.  Solving Key Challenges in Battery Research Using In Situ Synchrotron and Neutron Techniques , 2017 .