Evolution of the ribosome at atomic resolution

Significance Ribosomes exist in every cell and are responsible for translation from mRNA to protein. The structure of the ribosomal common core is highly conserved in all living species, while the outer regions of the ribosome are variable. Ribosomal RNA of eukaryotes contains expansion segments accreted onto the surface of the core, which is nearly identical in structure to that in prokaryotic ribosomes. Comparing eukaryotic and prokaryotic ribosomes allows us to identify 3D insertion fingerprints of the expansion segments. Similar fingerprints allow us to analyze the common core and detect ancestral expansion segments within it. We construct a molecular model of ribosomal evolution starting from primordial biological systems near the dawn of life, culminating with relatively recent changes specific to metazoans. The origins and evolution of the ribosome, 3–4 billion years ago, remain imprinted in the biochemistry of extant life and in the structure of the ribosome. Processes of ribosomal RNA (rRNA) expansion can be “observed” by comparing 3D rRNA structures of bacteria (small), yeast (medium), and metazoans (large). rRNA size correlates well with species complexity. Differences in ribosomes across species reveal that rRNA expansion segments have been added to rRNAs without perturbing the preexisting core. Here we show that rRNA growth occurs by a limited number of processes that include inserting a branch helix onto a preexisting trunk helix and elongation of a helix. rRNA expansions can leave distinctive atomic resolution fingerprints, which we call “insertion fingerprints.” Observation of insertion fingerprints in the ribosomal common core allows identification of probable ancestral expansion segments. Conceptually reversing these expansions allows extrapolation backward in time to generate models of primordial ribosomes. The approach presented here provides insight to the structure of pre-last universal common ancestor rRNAs and the subsequent expansions that shaped the peptidyl transferase center and the conserved core. We infer distinct phases of ribosomal evolution through which ribosomal particles evolve, acquiring coding and translocation, and extending and elaborating the exit tunnel.

[1]  N. Lehman,et al.  The RNA World: molecular cooperation at the origins of life , 2014, Nature Reviews Genetics.

[2]  Lan Wang,et al.  RiboVision suite for visualization and analysis of ribosomes. , 2014, Faraday discussions.

[3]  N. Hud,et al.  Abiotic synthesis of RNA in water: a common goal of prebiotic chemistry and bottom-up synthetic biology. , 2014, Current opinion in chemical biology.

[4]  Gerald F. Joyce,et al.  A Cross-chiral RNA Polymerase Ribozyme , 2014, Nature.

[5]  B. Kuhlman,et al.  The Rodin-Ohno hypothesis that two enzyme superfamilies descended from one ancestral gene: an unlikely scenario for the origins of translation that will not be dismissed , 2014, Biology Direct.

[6]  N. Hud,et al.  Spontaneous prebiotic formation of a β-ribofuranoside that self-assembles with a complementary heterocycle. , 2014, Journal of the American Chemical Society.

[7]  Alan Brown,et al.  Structure of the Yeast Mitochondrial Large Ribosomal Subunit , 2014, Science.

[8]  G. F. Joyce,et al.  Highly efficient self-replicating RNA enzymes. , 2014, Chemistry & biology.

[9]  Chad R Bernier,et al.  Secondary Structures of rRNAs from All Three Domains of Life , 2014, PloS one.

[10]  Ruedi Aebersold,et al.  Architecture of the large subunit of the mammalian mitochondrial ribosome , 2013, Nature.

[11]  Charles W Carter,et al.  Aminoacylating Urzymes Challenge the RNA World Hypothesis*♦ , 2013, The Journal of Biological Chemistry.

[12]  Eran Segal,et al.  Deciphering the rules by which 5′-UTR sequences affect protein expression in yeast , 2013, Proceedings of the National Academy of Sciences.

[13]  E. Westhof,et al.  New structural insights into the decoding mechanism: Translation infidelity via a G·U pair with Watson–Crick geometry , 2013, FEBS letters.

[14]  Martha A. Grover,et al.  Secondary structure and domain architecture of the 23S and 5S rRNAs , 2013, Nucleic acids research.

[15]  A. Mondragón Structural studies of RNase P. , 2013, Annual review of biophysics.

[16]  Daniel N. Wilson,et al.  Structures of the human and Drosophila 80S ribosome , 2013, Nature.

[17]  Steven A Benner,et al.  The "strong" RNA world hypothesis: fifty years old. , 2013, Astrobiology.

[18]  Loren Dean Williams,et al.  The origin of RNA and "my grandfather's axe". , 2013, Chemistry & biology.

[19]  W. Doolittle Is junk DNA bunk? A critique of ENCODE , 2013, Proceedings of the National Academy of Sciences.

[20]  J. Frank,et al.  High-resolution cryo-electron microscopy structure of the Trypanosoma brucei ribosome , 2013, Nature.

[21]  R. Eritja,et al.  Efficient self-assembly in water of long noncovalent polymers by nucleobase analogues. , 2013, Journal of the American Chemical Society.

[22]  S. Harvey,et al.  Molecular paleontology: a biochemical model of the ancestral ribosome , 2013, Nucleic acids research.

[23]  Pelin Yilmaz,et al.  The SILVA ribosomal RNA gene database project: improved data processing and web-based tools , 2012, Nucleic Acids Res..

[24]  M. Yusupov,et al.  Crystal structure of the 80S yeast ribosome. , 2012, Current opinion in structural biology.

[25]  Michael L. Manapat,et al.  Spontaneous network formation among cooperative RNA replicators , 2012, Nature.

[26]  T. Pan,et al.  Misacylation of tRNA with methionine in Saccharomyces cerevisiae , 2012, Nucleic acids research.

[27]  Harold S. Bernhardt The RNA world hypothesis: the worst theory of the early evolution of life (except for all the others)a , 2012, Biology Direct.

[28]  M. Yusupov,et al.  One core, two shells: bacterial and eukaryotic ribosomes , 2012, Nature Structural &Molecular Biology.

[29]  Chiaolong Hsiao,et al.  RNA Folding and Catalysis Mediated by Iron (II) , 2012, PloS one.

[30]  Michael P Robertson,et al.  The origins of the RNA world. , 2012, Cold Spring Harbor perspectives in biology.

[31]  M. Grover,et al.  Universal Sequence Replication, Reversible Polymerization and Early Functional Biopolymers: A Model for the Initiation of Prebiotic Sequence Evolution , 2012, PloS one.

[32]  P. Schimmel,et al.  Structural analyses clarify the complex control of mistranslation by tRNA synthetases. , 2012, Current opinion in structural biology.

[33]  G. Fox,et al.  An exit cavity was crucial to the polymerase activity of the early ribosome. , 2012, Astrobiology.

[34]  B. Lang,et al.  Mitochondrial Evolution , 1999 .

[35]  N. Ban,et al.  Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6 , 2011, Science.

[36]  S. Strobel,et al.  Minimal transition state charge stabilization of the oxyanion during peptide bond formation by the ribosome. , 2011, Biochemistry.

[37]  S. Strobel,et al.  The chemical versatility of RNA , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  A. Bashan,et al.  A vestige of a prebiotic bonding machine is functioning within the contemporary ribosome , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[39]  J. Doudna,et al.  Crystal structure of the HCV IRES central domain reveals strategy for start-codon positioning. , 2011, Structure.

[40]  H James Cleaves,et al.  Carbonaceous meteorites contain a wide range of extraterrestrial nucleobases , 2011, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Raghuvir N. Sengupta,et al.  The mechanism of peptidyl transfer catalysis by the ribosome. , 2011, Annual review of biochemistry.

[42]  Vincent B. Chen,et al.  Structures of the Bacterial Ribosome in Classical and Hybrid States of tRNA Binding , 2011, Science.

[43]  T. Pan,et al.  Misacylation of specific nonmethionyl tRNAs by a bacterial methionyl-tRNA synthetase , 2011, Proceedings of the National Academy of Sciences.

[44]  P. Holliger,et al.  Ribozyme-Catalyzed Transcription of an Active Ribozyme , 2011, Science.

[45]  N. Polacek,et al.  The ribosome: a molecular machine powered by RNA. , 2011, Metal ions in life sciences.

[46]  Peer Bork,et al.  Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy , 2011, Nucleic Acids Res..

[47]  N. Ban,et al.  Crystal Structure of the Eukaryotic 40S Ribosomal Subunit in Complex with Initiation Factor 1 , 2011, Science.

[48]  M. Yusupov,et al.  Crystal Structure of the Eukaryotic Ribosome , 2010, Science.

[49]  Johannes Söding,et al.  Cryo-EM structure and rRNA model of a translating eukaryotic 80S ribosome at 5.5-Å resolution , 2010, Proceedings of the National Academy of Sciences.

[50]  J. Szostak,et al.  The origins of cellular life. , 2010, Cold Spring Harbor perspectives in biology.

[51]  Y. Caspi,et al.  Ancient machinery embedded in the contemporary ribosome. , 2010, Biochemical Society transactions.

[52]  J. Gogarten,et al.  Inferring the Ancient History of the Translation Machinery and Genetic Code via Recapitulation of Ribosomal Subunit Assembly Orders , 2010, PloS one.

[53]  Gerhard Eckel,et al.  High molecular diversity of extraterrestrial organic matter in Murchison meteorite revealed 40 years after its fall , 2010, Proceedings of the National Academy of Sciences.

[54]  J. Ferry,et al.  Mineral Evolution: Mineralogy in the Fourth Dimension , 2010 .

[55]  Kimitsuna Watanabe Unique features of animal mitochondrial translation systems , 2010, Proceedings of the Japan Academy. Series B, Physical and biological sciences.

[56]  J. T. Maynard,et al.  Molecular Architecture and Biological Reactions , 2010 .

[57]  Chiaolong Hsiao,et al.  Peeling the onion: ribosomes are ancient molecular fossils. , 2009, Molecular biology and evolution.

[58]  V. Ramakrishnan,et al.  What recent ribosome structures have revealed about the mechanism of translation , 2009, Nature.

[59]  T. Steitz,et al.  A structural view on the mechanism of the ribosome-catalyzed peptide bond formation. , 2009, Biochimica et biophysica acta.

[60]  N. Moran,et al.  Origin of an Alternative Genetic Code in the Extremely Small and GC–Rich Genome of a Bacterial Symbiont , 2009, PLoS genetics.

[61]  R. Agrawal,et al.  Structure of a mitochondrial ribosome with minimal RNA , 2009, Proceedings of the National Academy of Sciences.

[62]  L. Williams,et al.  A recurrent magnesium-binding motif provides a framework for the ribosomal peptidyl transferase center , 2009, Nucleic acids research.

[63]  T. Cech,et al.  Crawling Out of the RNA World , 2009, Cell.

[64]  S. Steinberg,et al.  A hierarchical model for evolution of 23S ribosomal RNA , 2009, Nature.

[65]  M. Paetzel,et al.  Unconventional serine proteases: Variations on the catalytic Ser/His/Asp triad configuration , 2008, Protein science : a publication of the Protein Society.

[66]  K. Bennett,et al.  RNase P without RNA: Identification and Functional Reconstitution of the Human Mitochondrial tRNA Processing Enzyme , 2008, Cell.

[67]  P. Schimmel Development of tRNA synthetases and connection to genetic code and disease , 2008, Protein science : a publication of the Protein Society.

[68]  Harry F Noller,et al.  The sarcin-ricin loop of 23S rRNA is essential for assembly of the functional core of the 50S ribosomal subunit. , 2008, RNA.

[69]  Zaida Luthey-Schulten,et al.  Molecular signatures of ribosomal evolution , 2008, Proceedings of the National Academy of Sciences.

[70]  O. Uhlenbeck,et al.  Different aa-tRNAs are selected uniformly on the ribosome. , 2008, Molecular cell.

[71]  Scott K. Silverman,et al.  Nucleic Acid Enzymes (Ribozymes and Deoxyribozymes): In Vitro Selection and Application , 2008 .

[72]  Temple F. Smith,et al.  The origin and evolution of the ribosome , 2008, Biology Direct.

[73]  J. Szostak,et al.  Ribosomal Synthesis of N-Methyl Peptides , 2008, Journal of the American Chemical Society.

[74]  H. Suga,et al.  Ribosomal synthesis of nonstandard peptides. , 2008, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[75]  T. Steitz A structural understanding of the dynamic ribosome machine , 2008, Nature Reviews Molecular Cell Biology.

[76]  Jack W. Szostak,et al.  An Expanded Set of Amino Acid Analogs for the Ribosomal Translation of Unnatural Peptides , 2007, PloS one.

[77]  E. Koonin,et al.  On the origin of the translation system and the genetic code in the RNA world by means of natural selection, exaptation, and subfunctionalization , 2006, Biology Direct.

[78]  R. Wolfenden,et al.  The rate enhancement produced by the ribosome: an improved model. , 2007, Biochemistry.

[79]  Wolfgang Wintermeyer,et al.  How ribosomes make peptide bonds. , 2007, Trends in biochemical sciences.

[80]  Jamie H. D. Cate,et al.  Structural basis for mRNA and tRNA positioning on the ribosome , 2006, Proceedings of the National Academy of Sciences.

[81]  M. Selmer,et al.  Structure of the 70S Ribosome Complexed with mRNA and tRNA , 2006, Science.

[82]  M Gerstein,et al.  The geometry of the ribosomal polypeptide exit tunnel. , 2006, Journal of molecular biology.

[83]  Stephen Freeland,et al.  On the evolution of the standard amino-acid alphabet , 2006, Genome Biology.

[84]  P. D. Rijk,et al.  Reconstructing evolution from eukaryotic small-ribosomal-subunit RNA sequences: Calibration of the molecular clock , 1993, Journal of Molecular Evolution.

[85]  E. Westhof,et al.  Topology of three-way junctions in folded RNAs. , 2006, RNA.

[86]  O. Uhlenbeck,et al.  Amino acid specificity in translation. , 2005, Trends in biochemical sciences.

[87]  C. A. Machado,et al.  Critical review of host specificity and its coevolutionary implications in the fig/fig-wasp mutualism , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[88]  Pascale Romby,et al.  Translational Operator of mRNA on the Ribosome: How Repressor Proteins Exclude Ribosome Binding , 2005, Science.

[89]  A. Emili,et al.  Interaction network containing conserved and essential protein complexes in Escherichia coli , 2005, Nature.

[90]  Joseph J Gillespie Characterizing regions of ambiguous alignment caused by the expansion and contraction of hairpin-stem loops in ribosomal RNA molecules. , 2004, Molecular phylogenetics and evolution.

[91]  S. Blacklow,et al.  Amino acid backbone specificity of the Escherichia coli translation machinery. , 2004, Journal of the American Chemical Society.

[92]  T. Steitz,et al.  The contribution of metal ions to the structural stability of the large ribosomal subunit. , 2004, RNA.

[93]  Annette Sievers,et al.  The ribosome as an entropy trap. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[94]  R. Kaufman Regulation of mRNA translation by protein folding in the endoplasmic reticulum. , 2004, Trends in biochemical sciences.

[95]  R. Agrawal,et al.  Structure of the Mammalian Mitochondrial Ribosome Reveals an Expanded Functional Role for Its Component Proteins , 2003, Cell.

[96]  Joachim Frank,et al.  Locking and Unlocking of Ribosomal Motions , 2003, Cell.

[97]  Christopher R. Stephens,et al.  Landscapes and Effective Fitness , 2003 .

[98]  D. Bu,et al.  Topological structure analysis of the protein-protein interaction network in budding yeast. , 2003, Nucleic acids research.

[99]  E. Westhof,et al.  Ribozymes: the first 20 years. , 2002, Molecular cell.

[100]  Scott M Stagg,et al.  Modeling a minimal ribosome based on comparative sequence analysis. , 2002, Journal of molecular biology.

[101]  C. Woese On the evolution of cells , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[102]  W. Delano The PyMOL Molecular Graphics System , 2002 .

[103]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[104]  C. Chothia,et al.  Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. , 2001, Journal of molecular biology.

[105]  Laura F. Landweber,et al.  How Mitochondria Redefine the Code , 2001, Journal of Molecular Evolution.

[106]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[107]  C R Woese,et al.  Translation: in retrospect and prospect. , 2001, RNA.

[108]  Laura F. Landweber,et al.  Rewiring the keyboard: evolvability of the genetic code , 2001, Nature Reviews Genetics.

[109]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[110]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[111]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[112]  C. Woese Interpreting the universal phylogenetic tree. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[113]  J. Caton,et al.  Metabolic components of energy expenditure in growing beef cattle - review. , 2000 .

[114]  A D Ellington,et al.  Design and optimization of effector-activated ribozyme ligases. , 2000, Nucleic acids research.

[115]  N. Moran,et al.  COSPECIATION BETWEEN BACTERIAL ENDOSYMBIONTS (BUCHNERA) AND A RECENT RADIATION OF APHIDS (UROLEUCON) AND PITFALLS OF TESTING FOR PHYLOGENETIC CONGRUENCE , 2000, Evolution; international journal of organic evolution.

[116]  J. Warner,et al.  The economics of ribosome biosynthesis in yeast. , 1999, Trends in biochemical sciences.

[117]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[118]  A. Jäschke,et al.  A small catalytic RNA motif with Diels-Alderase activity. , 1999, Chemistry & biology.

[119]  P. Khaitovich,et al.  Characterization of functionally active subribosomal particles from Thermus aquaticus. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[120]  D. Penny,et al.  The Path from the RNA World , 1998, Journal of Molecular Evolution.

[121]  David Penny,et al.  Relics from the RNA World , 1998, Journal of Molecular Evolution.

[122]  Wei Zhou,et al.  Characterization of the Yeast Transcriptome , 1997, Cell.

[123]  G. Olsen,et al.  Ribosomal RNA: a key to phylogeny , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[124]  M. Eigen,et al.  Viral quasispecies. , 1993, Scientific American.

[125]  William Stallings,et al.  Operating Systems: Internals and Design Principles , 1991 .

[126]  J. Bachellerie,et al.  Evolution of large-subunit rRNA structure. The diversification of divergent D3 domain among major phylogenetic groups. , 1990, European journal of biochemistry.

[127]  S A Benner,et al.  Modern metabolism as a palimpsest of the RNA world. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[128]  J. Bachellerie,et al.  Evolution of large subunit rRNA structure. The 3' terminal domain contains elements of secondary structure specific to major phylogenetic groups. , 1989, Biochimie.

[129]  A. Warshel,et al.  How do serine proteases really work? , 1989, Biochemistry.

[130]  J. Bachellerie,et al.  Comparisons of large subunit rRNAs reveal some eukaryote-specific elements of secondary structure. , 1987, Biochimie.

[131]  S. Hecht,et al.  Ribosome-catalyzed formation of an abnormal peptide analogue. , 1986, Biochemistry.

[132]  W. Gilbert Origin of life: The RNA world , 1986, Nature.

[133]  J. Bachellerie,et al.  The complete nucleotide sequence of mouse 28S rRNA gene. Implications for the process of size increase of the large subunit rRNA in higher eukaryotes. , 1984, Nucleic acids research.

[134]  N. Pace,et al.  The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme , 1983, Cell.

[135]  R. Gutell,et al.  Secondary structure model for 23S ribosomal RNA. , 1981, Nucleic acids research.

[136]  G. Fox,et al.  An archaebacterial 5S rRNA contains a long insertion sequence , 1981, Nature.

[137]  R. Gutell,et al.  Secondary structure model for bacterial 16S ribosomal RNA: phylogenetic, enzymatic and chemical evidence. , 1980, Nucleic acids research.

[138]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[139]  F. Jacob,et al.  Evolution and tinkering. , 1977, Science.

[140]  M. Kukhanova,et al.  Synthesis of thioamide bond catalyzed by E. coli ribosomes , 1976, FEBS letters.

[141]  J. Kraut,et al.  Subtilisin; a stereochemical mechanism involving transition-state stabilization. , 1972, Biochemistry.

[142]  A. Rich,et al.  Ribosome-Catalyzed Polyester Formation , 1971, Science.

[143]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[144]  A. Rich,et al.  Ribosome-catalyzed ester formation. , 1970, Biochemistry.

[145]  L. Orgel Evolution of the genetic apparatus. , 1968, Journal of molecular biology.

[146]  F. H. C. CRICK,et al.  Origin of the Genetic Code , 1967, Nature.

[147]  H. G. Khorana,et al.  Polynucleotide synthesis and the genetic code. , 1966, Harvey lectures.

[148]  Alexander Rich,et al.  On the problems of evolution and biochemical information transfer , 1962 .

[149]  D. Burke,et al.  The nucleic acid content of influenza virus. , 1957, Biochimica et biophysica acta.

[150]  H. K. Schachman,et al.  The isolation and characterization of a macromolecular ribonucleoprotein from yeast , 1956 .

[151]  V. Ramakrishnan,et al.  Structure of the 30 S ribosomal subunit , 2022 .