A Review of the Frequency Estimation and Tracking Problems

This report presents a concise review of some frequency estimation and frequency tracking problems. In particular, the report focusses on aspects of these problems which have been addressed by members of the Frequency Tracking and Estimation project of the Centre for Robust and Adaptive Systems. The report is divided into four parts: problem specification and discussion, associated problems, frequency estimation algorithms and frequency tracking algorithms. Part I begins with a definition of the various frequency estimation and tracking problems. Practical examples of where each problem may arise are given. A comparison is made between the frequency estimation and tracking problems. In Part II, block frequency estimation algorithms, fast block frequency estimation algorithms and notch filtering techniques for frequency estimation are dealt with. Frequency tracking algorithms are examined in Part III. Part IV of this report examines various problems associated with frequency estimation. Associated problems include Cramer-Rao lower bounds, theoretical algorithm performance, frequency resolution, use of the analytic signal and model order selection.

[1]  Hugo Van hamme A stochastical limit to the resolution of least squares estimation of the frequencies of a double complex sinusoid , 1991, IEEE Trans. Signal Process..

[2]  Brian D. O. Anderson,et al.  Threshold effects in multiharmonic maximum likelihood frequency estimation , 1994, Signal Process..

[3]  W. Andrew,et al.  LO, and A. , 1988 .

[4]  Brian D. O. Anderson,et al.  Conditional mean and maximum likelihood approaches to multiharmonic frequency estimation , 1994, IEEE Trans. Signal Process..

[5]  Robin J. Evans,et al.  Multiple target tracking and multiple frequency line tracking using hidden Markov models , 1991, IEEE Trans. Signal Process..

[6]  Y. Bar-Shalom Tracking and data association , 1988 .

[7]  I. Introductiok Estimation for Rotational Processes with One Degree of Freedom-Part I1 : Discrete-Time Processes , 1975 .

[8]  S. Gupta,et al.  The Digital Phase-Locked Loop as a Near-Optimum FM Demodulator , 1972, IEEE Trans. Commun..

[9]  Peter J. Kootsookos,et al.  Threshold behavior of the maximum likelihood estimator of frequency , 1994, IEEE Trans. Signal Process..

[10]  Robin J. Evans,et al.  Integrated probabilistic data association , 1994, IEEE Trans. Autom. Control..

[11]  S. Kung,et al.  Adaptive notch filtering for the retrieval of sinusoids in noise , 1984 .

[12]  Arye Nehorai,et al.  Adaptive comb filtering for harmonic signal enhancement , 1986, IEEE Trans. Acoust. Speech Signal Process..

[13]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[14]  R. Bitmead On recursive discrete Fourier transformation , 1982 .

[15]  R. R. Boorstyn,et al.  Multiple tone parameter estimation from discrete-time observations , 1976, The Bell System Technical Journal.

[16]  Benjamin Friedlander,et al.  The achievable accuracy in estimating the instantaneous phase and frequency of a constant amplitude signal , 1993, IEEE Trans. Signal Process..

[17]  John B. Moore,et al.  A Gaussian Sum Approach to Phase and Frequency Estimation , 1977, IEEE Trans. Commun..

[18]  Vaughan Clarkson Efficient Single Frequency Estimators , 1992 .

[19]  Robert Boorstyn,et al.  Single tone parameter estimation from discrete-time observations , 1974, IEEE Trans. Inf. Theory.

[20]  Steven Kay,et al.  A Fast and Accurate Single Frequency Estimator , 2022 .

[21]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  David A. Holdsworth,et al.  Frequency tracking using hidden Markov models with amplitude and phase information , 1993, IEEE Trans. Signal Process..

[23]  Sidney J. Yakowitz,et al.  Asymptotic theory for a fast frequency detector , 1993, IEEE Trans. Inf. Theory.

[24]  Graham C. Goodwin,et al.  Estimation of Models for Systems having Deterministic and Random Disturbances , 1987 .

[25]  Alan S. Willsky Fourier series and estimation on the circle with applications to synchronous communication-II: Implementation , 1974, IEEE Trans. Inf. Theory.

[26]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. I. Fundamentals , 1992, Proc. IEEE.

[27]  A. Willsky,et al.  Estimation for Rotational Processes with One Degree of Freedom , 1972 .

[28]  B. Boashash,et al.  Time-frequency signal analysis and instantaneous frequency estimation: methodology, relationships and implementations , 1989, IEEE International Symposium on Circuits and Systems,.

[29]  R. F. Barrett,et al.  Generalisation of the method for the estimation of the frequencies of tones in noise from the phases of discrete fourier transforms , 1987 .

[30]  B. G. Quinn,et al.  ESTIMATING THE NUMBER OF TERMS IN A SINUSOIDAL REGRESSION , 1989 .

[31]  Roy L. Streit,et al.  Frequency line tracking using hidden Markov models , 1990, IEEE Trans. Acoust. Speech Signal Process..

[32]  Harry B. Lee,et al.  The Cramer-Rao bound on frequency estimates of signals closely spaced in frequency , 1992, IEEE Trans. Signal Process..

[33]  Brian D. O. Anderson,et al.  Characterization of threshold for single tone maximum likelihood frequency estimation , 1995, IEEE Trans. Signal Process..

[34]  Barry G. Quinn,et al.  THE RESOLUTION OF CLOSELY ADJACENT SPECTRAL LINES , 1989 .

[35]  Brian C. Lovell,et al.  The circular nature of discrete-time frequency estimates , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[36]  E. Hannan Determining the number of jumps in a spectrum , 1993 .

[37]  R. F. Barrett,et al.  An efficient method for the estimation of the frequency of a single tone in noise from the phases of discrete Fourier transforms , 1986 .

[38]  E. Bedrosian A Product Theorem for Hilbert Transforms , 1963 .

[39]  S. Gupta,et al.  Quasi-Optimum Digital Phase-Locked Loops , 1973, IEEE Trans. Commun..

[40]  Boualem Boashash,et al.  A unified approach to the STFT, TFDs, and instantaneous frequency , 1992, IEEE Trans. Signal Process..

[41]  Tretiak,et al.  Estimation for Rotational Processes with One Degree Sf Freedom-part I: Introduction and Contimuous-time Processes , 1975 .

[42]  Robin J. Evans,et al.  Multiple Frequency Line Tracking with Hidden Markov Models - Further Results , 1993, IEEE Trans. Signal Process..

[43]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[44]  H. Akaike A new look at the statistical model identification , 1974 .

[45]  Ben James Approaches to multiharmonic frequency tracking and estimation , 1992 .

[46]  B.C. Lovell,et al.  The statistical performance of some instantaneous frequency estimators , 1992, IEEE Trans. Signal Process..

[47]  R. F. Barrett,et al.  ML estimation of the fundamental frequency of a harmonic series , 1987 .

[48]  Alan S. Willsky,et al.  Estimation for rotational processes with one degree of freedom--Part III: Implementation , 1975 .

[49]  Barry G. Quinn,et al.  Estimating frequency by interpolation using Fourier coefficients , 1994, IEEE Trans. Signal Process..

[50]  A. Nuttall,et al.  On the quadrature approximation to the Hilbert transform of modulated signals , 1966 .

[51]  Barry G. Quinn,et al.  Some new high-accuracy frequency estimators , 1992 .

[52]  Ah Chung Tsoi,et al.  A Kalman filtering approach to short-time Fourier analysis , 1986, IEEE Trans. Acoust. Speech Signal Process..

[53]  Brian D. O. Anderson,et al.  Performance of the maximum likelihood constant frequency estimator for frequency tracking , 1994, IEEE Trans. Signal Process..

[54]  E. J. Hannan,et al.  ON‐LINE FREQUENCY ESTIMATION , 1993 .

[55]  Alan S. Willsky,et al.  Fourier series and estimation on the circle with applications to synchronous communication-I: Analysis , 1974, IEEE Trans. Inf. Theory.

[56]  Arye Nehorai,et al.  Newton algorithms for conditional and unconditional maximum likelihood estimation of the parameters of exponential signals in noise , 1992, IEEE Trans. Signal Process..

[57]  Boualem Boashash,et al.  Estimating and interpreting the instantaneous frequency of a signal. II. A/lgorithms and applications , 1992, Proc. IEEE.

[58]  Brian C. Lovell,et al.  Efficient Frequency Estimation and Time-Frequency Representations , 1990 .

[59]  I. Vaughan L. Clarkson,et al.  Analysis of the variance threshold of Kay's weighted linear predictor frequency estimator , 1994, IEEE Trans. Signal Process..

[60]  G. W. Lank,et al.  A Semicoherent Detection and Doppler Estimation Statistic , 1973, IEEE Transactions on Aerospace and Electronic Systems.

[61]  A. W. Rihaczek,et al.  Hilbert transforms and the complex representation of real signals , 1966 .

[62]  R. Bitmead,et al.  Adaptive frequency sampling filters , 1980, 1980 19th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes.

[63]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[64]  Harold J. Kushner,et al.  Stochastic systems with small noise, analysis and simulation; a phase locked loop example , 1985 .