The subiculum: Unique hippocampal hub and more

The hippocampal formation, which comprises the hippocampus proper, dentate gyrus, and subiculum, is crucial for learning, memory, and spatial navigation. Historically, most studies have focused on the hippocampus proper and dentate gyrus; however, recent evidence has highlighted the substantial contribution of the subiculum to interregional communication and behavioral performance. Moreover, various network oscillations in the subiculum appear to be crucial for cognitive functions. The subiculum shows complicated spatial representation during exploratory behavior, suggesting that the subiculum does not simply relay hippocampal information to the target regions but it functions as a unique computational unit. The network mechanism underlying the uniqueness of the subiculum awaits further investigation.

[1]  M. R. Mehta,et al.  Role of experience and oscillations in transforming a rate code into a temporal code , 2002, Nature.

[2]  Torkel Hafting,et al.  Conjunctive Representation of Position, Direction, and Velocity in Entorhinal Cortex , 2006, Science.

[3]  Kathryn A Davis,et al.  Electrophysiological Signatures of Spatial Boundaries in the Human Subiculum , 2017, The Journal of Neuroscience.

[4]  K. Jeffery,et al.  The Boundary Vector Cell Model of Place Cell Firing and Spatial Memory , 2006, Reviews in the neurosciences.

[5]  F. Gage,et al.  Resolving New Memories: A Critical Look at the Dentate Gyrus, Adult Neurogenesis, and Pattern Separation , 2011, Neuron.

[6]  Nelson Spruston,et al.  Plasticity of Burst Firing Induced by Synergistic Activation of Metabotropic Glutamate and Acetylcholine Receptors , 2009, Neuron.

[7]  D. Tank,et al.  Intracellular dynamics of hippocampal place cells during virtual navigation , 2009, Nature.

[8]  G. Buzsáki,et al.  Pyramidal Cell-Interneuron Interactions Underlie Hippocampal Ripple Oscillations , 2014, Neuron.

[9]  J. T. Erichsen,et al.  Fornical and nonfornical projections from the rat hippocampal formation to the anterior thalamic nuclei , 2015, Hippocampus.

[10]  Yuji Ikegaya,et al.  3‐Hz subthreshold oscillations of CA2 neurons In vivo , 2016, Hippocampus.

[11]  Mayank R. Mehta,et al.  Causal Influence of Visual Cues on Hippocampal Directional Selectivity , 2016, Cell.

[12]  Jeffrey S. Taube,et al.  Vestibular and attractor network basis of the head direction cell signal in subcortical circuits , 2012, Front. Neural Circuits.

[13]  Mark Stewart,et al.  Propagation of synchronous epileptiform events from subiculum backward into area CA1 of rat brain slices , 2001, Brain Research.

[14]  W. Cowan,et al.  An autoradiographic study of the organization of the efferet connections of the hippocampal formation in the rat , 1977, The Journal of comparative neurology.

[15]  Liqun Luo,et al.  Teneurin-3 controls topographic circuit assembly in the hippocampus , 2018, Nature.

[16]  B. McNaughton,et al.  Independent Codes for Spatial and Episodic Memory in Hippocampal Neuronal Ensembles , 2005, Science.

[17]  Kat Christiansen,et al.  The subiculum: the heart of the extended hippocampal system. , 2015, Progress in brain research.

[18]  Norio Ishizuka,et al.  Topographic distribution of cortical projection cells in the rat subiculum , 2015, Neuroscience Research.

[19]  Ivan Cohen,et al.  Activity dependent feedback inhibition may maintain head direction signals in mouse presubiculum , 2017, Nature Communications.

[20]  G Buzsáki,et al.  The hippocampo-neocortical dialogue. , 1996, Cerebral cortex.

[21]  R. Hampson,et al.  Effects of Ibotenate Hippocampal and Extrahippocampal Destruction on Delayed-Match and -Nonmatch-to-Sample Behavior in Rats , 1999, The Journal of Neuroscience.

[22]  R. Hen,et al.  Requirement of Hippocampal Neurogenesis for the Behavioral Effects of Antidepressants , 2003, Science.

[23]  David J. Foster,et al.  Reverse replay of behavioural sequences in hippocampal place cells during the awake state , 2006, Nature.

[24]  G. Buzsáki,et al.  Forward and reverse hippocampal place-cell sequences during ripples , 2007, Nature Neuroscience.

[25]  G. Buzsáki,et al.  Spike train dynamics predicts theta-related phase precession in hippocampal pyramidal cells , 2002, Nature.

[26]  D. Finch,et al.  Responses of rat subicular neurons to convergent stimulation of lateral entorhinal cortex and CA1 in vivo , 2000, Brain Research.

[27]  Szabolcs Káli,et al.  Differences in subthreshold resonance of hippocampal pyramidal cells and interneurons: the role of h-current and passive membrane characteristics , 2010, The Journal of physiology.

[28]  M. Witter,et al.  Projection from the nucleus reuniens thalami to the hippocampal region: Light and electron microscopic tracing study in the rat with the anterograde tracer Phaseolus vulgaris‐leucoagglutinin , 1990, The Journal of comparative neurology.

[29]  Donald A. Wilson,et al.  Pattern Separation: A Common Function for New Neurons in Hippocampus and Olfactory Bulb , 2011, Neuron.

[30]  Sean Commins,et al.  The effects of low frequency and two-pulse stimulation protocols on synaptic transmission in the CA1-subiculum pathway in the anaesthetized rat , 2000, Neuroscience Letters.

[31]  H. Boddeke,et al.  Activation of 5-HTIB receptors suppresses low but not high frequency synaptic transmission in the rat subicular cortex in vitro , 1996, Brain Research.

[32]  Surya Ganguli,et al.  Behavioral/systems/cognitive Spatial Information Outflow from the Hippocampal Circuit: Distributed Spatial Coding and Phase Precession in the Subiculum , 2022 .

[33]  G. Buzsáki,et al.  Distinct Representations and Theta Dynamics in Dorsal and Ventral Hippocampus , 2010, The Journal of Neuroscience.

[34]  D. Amaral Emerging principles of intrinsic hippocampal organization , 1993, Current Opinion in Neurobiology.

[35]  Li Lu,et al.  Coordination of entorhinal–hippocampal ensemble activity during associative learning , 2014, Nature.

[36]  Inah Lee,et al.  The relationship between the field-shifting phenomenon and representational coherence of place cells in CA1 and CA3 in a cue-altered environment. , 2007, Learning & memory.

[37]  T. Kaneko,et al.  Patterns of axonal collateralization of single layer V cortical projection neurons in the rat presubiculum , 2011, The Journal of comparative neurology.

[38]  M. Stewart,et al.  Intrinsic connectivity of the rat subiculum: II. Properties of synchronous spontaneous activity and a demonstration of multiple generator regions , 2001, The Journal of comparative neurology.

[39]  Kenji Mizuseki,et al.  Theta oscillations decrease spike synchrony in the hippocampus and entorhinal cortex , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  M. Witter,et al.  Topographical and laminar organization of subicular projections to the parahippocampal region of the rat , 2003, The Journal of comparative neurology.

[41]  Yuichiro Hayashi,et al.  Network mechanisms of hippocampal laterality, place coding, and goal-directed navigation , 2016, The Journal of Physiological Sciences.

[42]  Norio Ishizuka,et al.  Organization of connectivity of the rat presubiculum: II. Associational and commissural connections , 2008, The Journal of comparative neurology.

[43]  Yuji Ikegaya,et al.  Novelty-Induced Phase-Locked Firing to Slow Gamma Oscillations in the Hippocampus: Requirement of Synaptic Plasticity , 2015, Neuron.

[44]  Attila Losonczy,et al.  Sublayer-Specific Coding Dynamics during Spatial Navigation and Learning in Hippocampal Area CA1 , 2016, Neuron.

[45]  R U Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  S. O’Mara,et al.  Analysis of recordings of single-unit firing and population activity in the dorsal subiculum of unrestrained, freely moving rats. , 2003, Journal of neurophysiology.

[47]  N. Tamamaki,et al.  Preservation of topography in the connections between the subiculum, field CA1, and the entorhinal cortex in rats , 1995, The Journal of comparative neurology.

[48]  M. Witter,et al.  Heterogeneity in the Dorsal Subiculum of the Rat. Distinct Neuronal Zones Project to Different Cortical and Subcortical Targets , 1990, The European journal of neuroscience.

[49]  B. McNaughton,et al.  Reactivation of hippocampal ensemble memories during sleep. , 1994, Science.

[50]  L. Frank,et al.  Awake Hippocampal Sharp-Wave Ripples Support Spatial Memory , 2012, Science.

[51]  T. Gloveli,et al.  Effects of serotonin on synaptic and intrinsic properties of rat subicular neurons in vitro , 1997, Brain Research.

[52]  Olivier Potvin,et al.  Lesions of the dorsal subiculum and the dorsal hippocampus impaired pattern separation in a task using distinct and overlapping visual stimuli , 2009, Neurobiology of Learning and Memory.

[53]  K. Mizuseki,et al.  Hippocampal information processing across sleep/wake cycles , 2017, Neuroscience Research.

[54]  Ivan Cohen,et al.  Cellular neuroanatomy of rat presubiculum , 2013, The European journal of neuroscience.

[55]  György Buzsáki,et al.  Gamma frequency oscillation in the hippocampus of the rat: intracellular analysis in vivo , 1998, The European journal of neuroscience.

[56]  György Buzsáki,et al.  Gamma oscillations dynamically couple hippocampal CA3 and CA1 regions during memory task performance , 2007, Proceedings of the National Academy of Sciences.

[57]  Theodore W. Berger,et al.  Reciprocal anatomical connections between hippocampus and subiculum in the rabbit: Evidence for subicular innervation of regio superior , 1980, Brain Research.

[58]  Mark S. Cembrowski,et al.  Dissociable Structural and Functional Hippocampal Outputs via Distinct Subiculum Cell Classes , 2018, Cell.

[59]  G. Buzsáki,et al.  Hippocampal CA1 pyramidal cells form functionally distinct sublayers , 2011, Nature Neuroscience.

[60]  Frédéric Manseau,et al.  Electrophysiological and Morphological Characterization of Chrna2 Cells in the Subiculum and CA1 of the Hippocampus: An Optogenetic Investigation , 2018, Front. Cell. Neurosci..

[61]  Christian Wozny,et al.  Synaptic plasticity in the subiculum , 2009, Progress in Neurobiology.

[62]  Robert E Hampson,et al.  Differential but Complementary Mnemonic Functions of the Hippocampus and Subiculum , 2004, Neuron.

[63]  L. Colgin,et al.  Theta–gamma Coupling in the Entorhinal–hippocampal System This Review Comes from a Themed Issue on Brain Rhythms and Dynamic Coordination Sciencedirect , 2022 .

[64]  L. Prida,et al.  Control of bursting by local inhibition in the rat subiculum in vitro , 2003 .

[65]  Song-Lin Ding,et al.  Comparative anatomy of the prosubiculum, subiculum, presubiculum, postsubiculum, and parasubiculum in human, monkey, and rodent , 2013, The Journal of comparative neurology.

[66]  M. Witter,et al.  Organization of the projections from the subiculum to the ventral striatum in the rat. A study using anterograde transport of Phaseolus vulgaris leucoagglutinin , 1987, Neuroscience.

[67]  Magdalena Götz,et al.  Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb , 2013, Proceedings of the National Academy of Sciences.

[68]  J. O’Keefe,et al.  Phase relationship between hippocampal place units and the EEG theta rhythm , 1993, Hippocampus.

[69]  F. Dudek,et al.  Electrophysiological evidence using focal flash photolysis of caged glutamate that CA1 pyramidal cells receive excitatory synaptic input from the subiculum. , 2005, Journal of neurophysiology.

[70]  H. Shibata Direct projections from the anterior thalamic nuclei to the retrohippocampal region in the rat , 1993, The Journal of comparative neurology.

[71]  N. McNaughton The role of the subiculum within the behavioural inhibition system , 2006, Behavioural Brain Research.

[72]  S. Bressler,et al.  Reversal of theta rhythm flow through intact hippocampal circuits , 2014, Nature Neuroscience.

[73]  Lin Xu,et al.  Long-term depression in rat CA1-subicular synapses depends on the G-protein coupled mACh receptors , 2005, Neuroscience Research.

[74]  R. Morris,et al.  Ibotenate Lesions of Hippocampus and/or Subiculum: Dissociating Components of Allocentric Spatial Learning , 1990, The European journal of neuroscience.

[75]  T. Hafting,et al.  Frequency of gamma oscillations routes flow of information in the hippocampus , 2009, Nature.

[76]  Rosa Cossart,et al.  Awake hippocampal reactivations project onto orthogonal neuronal assemblies , 2016, Science.

[77]  Michael W. Miller,et al.  Cortical connections between rat cingulate cortex and visual, motor, and postsubicular cortices , 1983, The Journal of comparative neurology.

[78]  P. E. Sharp Subicular place cells generate the same “map” for different environments: Comparison with hippocampal cells , 2006, Behavioural Brain Research.

[79]  A. Fenton,et al.  Ensemble Place Codes in Hippocampus: CA1, CA3, and Dentate Gyrus Place Cells Have Multiple Place Fields in Large Environments , 2011, PloS one.

[80]  Jesse Jackson,et al.  Fast and Slow Gamma Rhythms Are Intrinsically and Independently Generated in the Subiculum , 2011, The Journal of Neuroscience.

[81]  Adriano B. L. Tort,et al.  OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons , 2012, Nature Neuroscience.

[82]  I S Curthoys,et al.  Head impulse test in unilateral vestibular loss , 2008, Neurology.

[83]  Sébastien Royer,et al.  Place cells are more strongly tied to landmarks in deep than in superficial CA1 , 2017, Nature Communications.

[84]  N. Spruston,et al.  Brain-derived neurotrophic factor differentially modulates excitability of two classes of hippocampal output neurons , 2016, Journal of neurophysiology.

[85]  S. O’Mara,et al.  The subiculum: a review of form, physiology and function , 2001, Progress in Neurobiology.

[86]  Kamran Diba,et al.  Activity dynamics and behavioral correlates of CA3 and CA1 hippocampal pyramidal neurons , 2012, Hippocampus.

[87]  Takaichi Fukuda,et al.  Immunohistochemical investigation of the internal structure of the mouse subiculum , 2016, Neuroscience.

[88]  S. Tonegawa,et al.  Young Dentate Granule Cells Mediate Pattern Separation, whereas Old Granule Cells Facilitate Pattern Completion , 2012, Cell.

[89]  M. Witter Organization of the entorhinal—hippocampal system: A review of current anatomical data , 1993, Hippocampus.

[90]  Albert K. Lee,et al.  Memory of Sequential Experience in the Hippocampus during Slow Wave Sleep , 2002, Neuron.

[91]  P E Sharp,et al.  Comparison of the timing of hippocampal and subicular spatial signals: Implications for path integration , 1999, Hippocampus.

[92]  Jacob M Olson,et al.  Subiculum neurons map the current axis of travel , 2016, Nature Neuroscience.

[93]  C. Köhler Intrinsic projections of the retrohippocampal region in the rat brain. I. The subicular complex , 1985, The Journal of comparative neurology.

[94]  Uwe Heinemann,et al.  Differential participation of pyramidal cells in generation of spontaneous sharp wave-ripples in the mouse subiculum in vitro , 2015, Neurobiology of Learning and Memory.

[95]  T. Kosaka,et al.  Distribution of the calcium binding proteins, calbindin D-28K and parvalbumin, in the subicular complex of the adult mouse , 1995, Neuroscience Research.

[96]  Jörg Wellmer,et al.  Long-lasting modi®cation of intrinsic discharge properties in subicular neurons following status epilepticus , 2002 .

[97]  L. M. Prida,et al.  Functional features of the rat subicular microcircuits studied in vitro , 2006, Behavioural Brain Research.

[98]  Eran Stark,et al.  Excitation and Inhibition Compete to Control Spiking during Hippocampal Ripples: Intracellular Study in Behaving Mice , 2014, The Journal of Neuroscience.

[99]  J. Behr,et al.  Muscarinic acetylcholine receptors and voltage-gated calcium channels contribute to bidirectional synaptic plasticity at CA1-subiculum synapses , 2009, Neuroscience Letters.

[100]  Yasuo Kawaguchi,et al.  Two subtypes of non-pyramidal cells in rat hippocampal formation identified by intracellular recording and HRP injection , 1987, Brain Research.

[101]  J. Knierim,et al.  Attractor dynamics of spatially correlated neural activity in the limbic system. , 2012, Annual review of neuroscience.

[102]  Eric R. Kandel,et al.  Increased Size and Stability of CA1 and CA3 Place Fields in HCN1 Knockout Mice , 2011, Neuron.

[103]  B. McNaughton,et al.  Replay of Neuronal Firing Sequences in Rat Hippocampus During Sleep Following Spatial Experience , 1996, Science.

[104]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[105]  J. Taube Electrophysiological properties of neurons in the rat subiculum in vitro , 2004, Experimental Brain Research.

[106]  P. E. Sharp,et al.  Spatial correlates of firing patterns of single cells in the subiculum of the freely moving rat , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[107]  J. T. Erichsen,et al.  Theta-Modulated Head Direction Cells in the Rat Anterior Thalamus , 2011, The Journal of Neuroscience.

[108]  H. Eichenbaum,et al.  The global record of memory in hippocampal neuronal activity , 1999, Nature.

[109]  Norio Ishizuka,et al.  Organization of connectivity of the rat presubiculum: I. Efferent projections to the medial entorhinal cortex , 2004, The Journal of comparative neurology.

[110]  Yangfan Peng,et al.  Layer-Specific Organization of Local Excitatory and Inhibitory Synaptic Connectivity in the Rat Presubiculum , 2017, Cerebral cortex.

[111]  R. Malenka,et al.  Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus , 1992, Neuron.

[112]  Raymond P. Kesner,et al.  Unfolding the cognitive map: The role of hippocampal and extra-hippocampal substrates based on a systems analysis of spatial processing , 2018, Neurobiology of Learning and Memory.

[113]  N. Spruston,et al.  Distribution of bursting neurons in the CA1 region and the subiculum of the rat hippocampus , 2008, The Journal of comparative neurology.

[114]  Masahiko Takada,et al.  Topographical organization of subicular neurons projecting to subcortical regions , 1994, Brain Research Bulletin.

[115]  Norio Ishizuka,et al.  Zonal distribution of perforant path cells in layer III of the entorhinal area projecting to CA1 and subiculum in the rat , 2012, Neuroscience Research.

[116]  Shane O'Mara,et al.  The subiculum: what it does, what it might do, and what neuroanatomy has yet to tell us , 2005, Journal of anatomy.

[117]  N. Tamamaki,et al.  Projection of the entorhinal layer II neurons in the rat as revealed by intracellular pressure‐injection of neurobiotin , 1993, Hippocampus.

[118]  I Ferrer,et al.  Distribution, morphological features, and synaptic connections of parvalbumin‐ and calbindin D28k‐immunoreactive neurons in the human hippocampal formation , 1993, The Journal of comparative neurology.

[119]  Olivier Potvin,et al.  Contribution of the dorsal subiculum to memory for temporal order and novelty detection using objects, odors, or spatial locations in the rat , 2010, Neurobiology of Learning and Memory.

[120]  M. Witter,et al.  Intrinsic connectivity of the rat subiculum: I. Dendritic morphology and patterns of axonal arborization by pyramidal neurons , 2001, The Journal of comparative neurology.

[121]  Olivier Potvin,et al.  Contributions of the dorsal hippocampus and the dorsal subiculum to processing of idiothetic information and spatial memory , 2007, Neurobiology of Learning and Memory.

[122]  Chen Sun,et al.  Distinct Neural Circuits for the Formation and Retrieval of Episodic Memories , 2017, Cell.

[123]  Fraser T. Sparks,et al.  Hippocampal CA2 Activity Patterns Change over Time to a Larger Extent than between Spatial Contexts , 2015, Neuron.

[124]  Lisa M. Giocomo,et al.  Temporal Frequency of Subthreshold Oscillations Scales with Entorhinal Grid Cell Field Spacing , 2007, Science.

[125]  G. Buzsáki,et al.  High-Frequency Oscillations in the Output Networks of the Hippocampal–Entorhinal Axis of the Freely Behaving Rat , 1996, The Journal of Neuroscience.

[126]  E. Lein,et al.  Defining a Molecular Atlas of the Hippocampus Using DNA Microarrays and High-Throughput In Situ Hybridization , 2004, The Journal of Neuroscience.

[127]  M. Witter,et al.  Subicular efferents are organized mostly as parallel projections: A double‐labeling, retrograde‐tracing study in the rat , 1998, The Journal of comparative neurology.

[128]  Susumu Takahashi Episodic-like memory trace in awake replay of hippocampal place cell activity sequences , 2015, eLife.

[129]  Yasuo Kawaguchi,et al.  Fast-spiking non-pyramidal cells in the hippocampal CA3 region, dentate gyrus and subiculum of rats , 1987, Brain Research.

[130]  T. Kishi,et al.  Topographical organization of projections from the subiculum to the hypothalamus in the rat , 2000, The Journal of comparative neurology.

[131]  Anna L. Powell,et al.  Asymmetric cross-hemispheric connections link the rat anterior thalamic nuclei with the cortex and hippocampal formation , 2017, Neuroscience.

[132]  S. Tonegawa,et al.  Successful Execution of Working Memory Linked to Synchronized High-Frequency Gamma Oscillations , 2014, Cell.

[133]  N Spruston,et al.  Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus. , 2000, Journal of neurophysiology.

[134]  J. T. Erichsen,et al.  The anterior thalamus provides a subcortical circuit supporting memory and spatial navigation , 2013, Front. Syst. Neurosci..

[135]  Caleb Kemere,et al.  Rapid and Continuous Modulation of Hippocampal Network State during Exploration of New Places , 2013, PloS one.

[136]  T. H. Bullock,et al.  Coherence of compound field potentials reveals discontinuities in the CA1-subiculum of the hippocampus in freely-moving rats , 1990, Neuroscience.

[137]  D. Amaral,et al.  Organization of CA1 projections to the subiculum: A PHA‐L analysis in the rat , 1991, Hippocampus.

[138]  V. Chan‐Palay,et al.  Neurons and terminals in the retrohippocampal region in the rat's brain identified by anti-γ-aminobutyric acid and anti-glutamic acid decarboxylase immunocytochemistry , 2004, Anatomy and Embryology.

[139]  György Buzsáki,et al.  Reactivations of emotional memory in the hippocampus–amygdala system during sleep , 2017, Nature Neuroscience.

[140]  S. Totterdell,et al.  Nitric oxide-containing pyramidal neurons of the subiculum innervate the CA1 area , 2002, Experimental Brain Research.

[141]  Lisa M. Giocomo,et al.  Heterogeneity in hippocampal place coding , 2018, Current Opinion in Neurobiology.

[142]  J. Taube The head direction signal: origins and sensory-motor integration. , 2007, Annual review of neuroscience.

[143]  Menno P. Witter,et al.  Connections of the subiculum of the rat: Topography in relation to columnar and laminar organization , 2006, Behavioural Brain Research.

[144]  Yangfan Peng,et al.  Functional Diversity of Subicular Principal Cells during Hippocampal Ripples , 2015, The Journal of Neuroscience.

[145]  N. Spruston,et al.  Output-Mode Transitions Are Controlled by Prolonged Inactivation of Sodium Channels in Pyramidal Neurons of Subiculum , 2005, PLoS biology.

[146]  John O'Keefe,et al.  Independent rate and temporal coding in hippocampal pyramidal cells , 2003, Nature.

[147]  J. Michael Wyss An autoradiographic study of the efferent connections of the entorhinal cortex in the rat , 2022 .

[148]  Eric H. Chang,et al.  Neurophysiological correlates of object recognition in the dorsal subiculum , 2012, Front. Behav. Neurosci..

[149]  B. McNaughton,et al.  Reactivation of Hippocampal Cell Assemblies: Effects of Behavioral State, Experience, and EEG Dynamics , 1999, The Journal of Neuroscience.

[150]  Eric R Kandel,et al.  Theta frequency stimulation up-regulates the synaptic strength of the pathway from CA1 to subiculum region of hippocampus. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[151]  J. Knierim,et al.  Hippocampal place cells: Parallel input streams, subregional processing, and implications for episodic memory , 2006, Hippocampus.

[152]  Yi Wang,et al.  Depolarized GABAergic Signaling in Subicular Microcircuits Mediates Generalized Seizure in Temporal Lobe Epilepsy , 2017, Neuron.

[153]  A. Treves,et al.  Distinct Ensemble Codes in Hippocampal Areas CA3 and CA1 , 2004, Science.

[154]  J. T. Erichsen,et al.  Parallel but separate inputs from limbic cortices to the mammillary bodies and anterior thalamic nuclei in the rat , 2010, The Journal of comparative neurology.

[155]  J. O’Keefe,et al.  Boundary Vector Cells in the Subiculum of the Hippocampal Formation , 2009, The Journal of Neuroscience.

[156]  S. Totterdell,et al.  Morphology and distribution of electrophysiologically defined classes of pyramidal and nonpyramidal neurons in rat ventral subiculum in vitro , 1997, The Journal of comparative neurology.

[157]  T. Ono,et al.  Effects of reward anticipation, reward presentation, and spatial parameters on the firing of single neurons recorded in the subiculum and nucleus accumbens of freely moving rats , 2000, Behavioural Brain Research.

[158]  N. Ishizuka,et al.  Laminar organization of the pyramidal cell layer of the subiculum in the rat , 2001, The Journal of comparative neurology.

[159]  J. Knierim,et al.  Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3 , 2004, Nature.

[160]  G. Buzsáki,et al.  Theta Oscillations Provide Temporal Windows for Local Circuit Computation in the Entorhinal-Hippocampal Loop , 2009, Neuron.

[161]  Xiangmin Xu,et al.  Noncanonical connections between the subiculum and hippocampal CA1 , 2016, The Journal of comparative neurology.

[162]  J. Guzowski,et al.  Differences in Hippocampal Neuronal Population Responses to Modifications of an Environmental Context: Evidence for Distinct, Yet Complementary, Functions of CA3 and CA1 Ensembles , 2004, The Journal of Neuroscience.

[163]  Otto W Witte,et al.  Loss of GABAergic neurons in the subiculum and its functional implications in temporal lobe epilepsy. , 2008, Brain : a journal of neurology.

[164]  L. Colgin,et al.  Slow and Fast Gamma Rhythms Coordinate Different Spatial Coding Modes in Hippocampal Place Cells , 2014, Neuron.

[165]  G. Buzsáki Hippocampal sharp wave‐ripple: A cognitive biomarker for episodic memory and planning , 2015, Hippocampus.

[166]  J. O'Keefe,et al.  The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. , 1971, Brain research.

[167]  L Menendez de la Prida,et al.  Electrophysiological and morphological diversity of neurons from the rat subicular complex in vitro , 2003, Hippocampus.

[168]  M. Brecht,et al.  Head-Directional Tuning and Theta Modulation of Anatomically Identified Neurons in the Presubiculum , 2015, The Journal of Neuroscience.

[169]  Seralynne D Vann,et al.  Collateral Projections Innervate the Mammillary Bodies and Retrosplenial Cortex: A New Category of Hippocampal Cells , 2018, eNeuro.

[170]  A. Fenton,et al.  Increasing adult hippocampal neurogenesis is sufficient to improve pattern separation , 2011, Nature.

[171]  J A McDonald,et al.  Neuronal production of fibronectin in the cerebral cortex during migration and layer formation is unique to specific cortical domains. , 1995, Developmental biology.

[172]  S. Tonegawa,et al.  Island Cells Control Temporal Association Memory , 2014, Science.

[173]  E. Callaway,et al.  Previously Published Works Uc Irvine Title: Cell-type-specific Circuit Connectivity of Hippocampal Ca1 Revealed through Cre-dependent Rabies Tracing Cell-type Specific Circuit Connectivity of Hippocampal Ca1 Revealed through Cre-dependent Rabies Tracing Nih Public Access Author Manuscript , 2022 .

[174]  R. Muller,et al.  Head-direction cells recorded from the postsubiculum in freely moving rats. II. Effects of environmental manipulations , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[175]  John P. Aggleton,et al.  Hippocampal–diencephalic–cingulate networks for memory and emotion: An anatomical guide , 2017, Brain and neuroscience advances.

[176]  E. Lein,et al.  Functional organization of the hippocampal longitudinal axis , 2014, Nature Reviews Neuroscience.

[177]  S M O'Mara,et al.  The projection from hippocampal area CA1 to the subiculum sustains long‐term potentiation , 1998, Neuroreport.

[178]  M. Frotscher,et al.  Chandelier cells in the hippocampal formation of the rat: The entorhinal area and subicular complex , 1993, The Journal of comparative neurology.

[179]  Alice Alvernhe,et al.  Different CA1 and CA3 Representations of Novel Routes in a Shortcut Situation , 2008, The Journal of Neuroscience.

[180]  M. Avoli,et al.  In vitro electrophysiology of rat subicular bursting neurons , 1997, Hippocampus.

[181]  M. Stewart,et al.  Differential modulation by carbachol of four separate excitatory afferent systems to the rat subiculum in vitro , 2004, Hippocampus.

[182]  Patricia E. Sharp,et al.  Subicular cells generate similar spatial firing patterns in two geometrically and visually distinctive environments: Comparison with hippocampal place cells , 1997, Behavioural Brain Research.

[183]  O. Steward,et al.  Cells of origin of entorhinal cortical afferents to the hippocampus and fascia dentata of the rat , 1976, The Journal of comparative neurology.

[184]  Jeffrey S. Taube,et al.  Origins of landmark encoding in the brain , 2011, Trends in Neurosciences.

[185]  Oded Shor,et al.  Target‐cell‐specific bidirectional synaptic plasticity at hippocampal output synapses , 2008, The European journal of neuroscience.

[186]  R K Wong,et al.  Intrinsic properties and evoked responses of guinea pig subicular neurons in vitro. , 1993, Journal of neurophysiology.

[187]  Hippocampal pyramidal neurons comprise two distinct cell types that are countermodulated by metabotropic receptors. , 2012, Neuron.

[188]  N. Spruston,et al.  Target‐specific output patterns are predicted by the distribution of regular‐spiking and bursting pyramidal neurons in the subiculum , 2012, Hippocampus.

[189]  Norio Matsuki,et al.  Subicular activation preceding hippocampal ripples in vitro , 2013, Scientific Reports.

[190]  Kally C. O'Reilly,et al.  Subicular–parahippocampal projections revisited: Development of a complex topography in the rat , 2013, The Journal of comparative neurology.

[191]  Maria V. Sanchez-Vives,et al.  Heterogeneous spatial representation by different subpopulations of neurons in the subiculum , 2017, Neuroscience.

[192]  T. Gloveli,et al.  The perforant path projection from the medial entorhinal cortex layer III to the subiculum in the rat combined hippocampal–entorhinal cortex slice , 1998, The European journal of neuroscience.

[193]  S M O'Mara,et al.  Synaptic plasticity in the hippocampal area CA1‐subiculum projection: Implications for theories of memory , 2000, Hippocampus.

[194]  J. Fell,et al.  The role of phase synchronization in memory processes , 2011, Nature Reviews Neuroscience.

[195]  Y. Wan,et al.  Theta-frequency membrane resonance and its ionic mechanisms in rat subicular pyramidal neurons , 2006, Neuroscience.

[196]  T. Bliss,et al.  Long‐lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path , 1973, The Journal of physiology.

[197]  B. McNaughton,et al.  Comparison of spatial and temporal characteristics of neuronal activity in sequential stages of hippocampal processing. , 1990, Progress in brain research.

[198]  G. Buzsáki,et al.  Sharp wave-associated high-frequency oscillation (200 Hz) in the intact hippocampus: network and intracellular mechanisms , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[199]  Adrien Peyrache,et al.  Transformation of the head-direction signal into a spatial code , 2016, bioRxiv.

[200]  Bryan C. Souza,et al.  Asymmetry of the temporal code for space by hippocampal place cells , 2016, Scientific Reports.

[201]  T. Gloveli,et al.  Electrophysiological properties of rat subicular neurons in vitro , 1996, Neuroscience Letters.

[202]  J. Howland,et al.  Acute stress and hippocampal output: exploring dorsal CA1 and subicular synaptic plasticity simultaneously in anesthetized rats , 2013, Physiological reports.

[203]  Christian Wozny,et al.  Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy , 2005, The Journal of comparative neurology.

[204]  E. Moser,et al.  Gamma oscillations in the hippocampus. , 2010, Physiology.

[205]  John P. Aggleton,et al.  Complementary subicular pathways to the anterior thalamic nuclei and mammillary bodies in the rat and macaque monkey brain , 2016, The European journal of neuroscience.

[206]  Charlotte N. Boccara,et al.  Grid cells in pre- and parasubiculum , 2010, Nature Neuroscience.

[207]  Inah Lee,et al.  A Double Dissociation between Hippocampal Subfields Differential Time Course of CA3 and CA1 Place Cells for Processing Changed Environments , 2004, Neuron.

[208]  Gabriella Panuccio,et al.  Cell Type-Specific Properties of Subicular GABAergic Currents Shape Hippocampal Output Firing Mode , 2012, PloS one.

[209]  Natalie L. M. Cappaert,et al.  The anatomy of memory: an interactive overview of the parahippocampal–hippocampal network , 2009, Nature Reviews Neuroscience.

[210]  Noelia Montejo,et al.  Stability of subicular place fields across multiple light and dark transitions , 2010, The European journal of neuroscience.

[211]  Christian Wozny,et al.  The Subiculum: A Potential Site of Ictogenesis in Human Temporal Lobe Epilepsy , 2005, Epilepsia.

[212]  N. Spruston,et al.  Action Potential Bursting in Subicular Pyramidal Neurons Is Driven by a Calcium Tail Current , 2001, The Journal of Neuroscience.

[213]  G. Buzsáki,et al.  Internally-organized mechanisms of the head direction sense , 2015, Nature Neuroscience.

[214]  D. Ji,et al.  Hippocampal awake replay in fear memory retrieval , 2017, Nature Neuroscience.

[215]  M. Bear,et al.  Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. , 1992, Proceedings of the National Academy of Sciences of the United States of America.