Bottom-Up Proteomics

In this chapter we provide an overview of bottom-up proteomic approaches. These allow the identification and characterization of proteins and their amino acid sequences, including post-translational modifications, by proteolytic digestion prior to mass spectrometry (MS) analysis. Intact proteins can be separated by gel electrophoresis followed by in-gel protein digestion to generate peptides which are then analyzed by MS. Alternatively, complex protein mixtures can be digested directly (an approach referred to as “shotgun”) and the resulting peptides can be separated by liquid chromatography prior to MS. Following MS analysis, the comparison of the peptides’ spectra with those predicted from genomics/proteomics sequence databases, or annotated peptide spectral libraries, allows the identification of peptides which are finally assigned to corresponding proteins. After a description of the separation methods and MS acquisition modes, a relevant part of the chapter will be dedicated to data processing pointing to algorithms, computational tools and strategies useful for researchers in the discovery process. In particular, liquid-chromatography (LC) based approaches, including Multidimensinal Protein Identification Technology (MudPIT), will be taken as reference and different aspects, ranging from database search engines to protein-protein interaction (PPI) network analysis, will be addressed. Potential issues will be discussed in the context of cardiovascular research, and specifically the last section will focus on the translational applications (clinical proteomics) of cardiovascular proteomics.

[1]  Juan Astorga-Wells,et al.  Rapid and Deep Human Proteome Analysis by Single-dimension Shotgun Proteomics* , 2013, Molecular & Cellular Proteomics.

[2]  Gary D. Bader,et al.  GeneMANIA Prediction Server 2013 Update , 2013, Nucleic Acids Res..

[3]  Vincenzo Lionetti,et al.  Placental stem cells pre-treated with a hyaluronan mixed ester of butyric and retinoic acid to cure infarcted pig hearts: a multimodal study. , 2011, Cardiovascular research.

[4]  Jens Allmer,et al.  Algorithms for the de novo sequencing of peptides from tandem mass spectra , 2011, Expert review of proteomics.

[5]  Alessandro Giacomello,et al.  Relative Roles of Direct Regeneration Versus Paracrine Effects of Human Cardiosphere-Derived Cells Transplanted Into Infarcted Mice , 2010, Circulation research.

[6]  Pierluigi Mauri,et al.  MudPIT analysis of released proteins in Pseudomonas aeruginosa laboratory and clinical strains in relation to pro-inflammatory effects. , 2012, Integrative biology : quantitative biosciences from nano to macro.

[7]  R Kaufmann,et al.  Matrix-assisted laser desorption ionization (MALDI) mass spectrometry: a novel analytical tool in molecular biology and biotechnology. , 1995, Journal of biotechnology.

[8]  J. Yates,et al.  Multidimensional LC separations in shotgun proteomics. , 2008, Analytical chemistry.

[9]  Henning Urlaub,et al.  Increased proteome coverage by combining PAGE and peptide isoelectric focusing: Comparative study of gel-based separation approaches , 2013, Proteomics.

[10]  Lennart Martens,et al.  PRIDE: The proteomics identifications database , 2005, Proteomics.

[11]  Leong L Ng,et al.  Proteomic profiling to identify prognostic biomarkers in heart failure. , 2012, In vivo.

[12]  Jarrett D. Egertson,et al.  Multiplexed MS/MS for Improved Data Independent Acquisition , 2013, Nature Methods.

[13]  Haiyan Tan,et al.  Systematic Optimization of Long Gradient Chromatography Mass Spectrometry for Deep Analysis of Brain Proteome , 2014, Journal of proteome research.

[14]  Sung Kyu Park,et al.  A quantitative analysis software tool for mass spectrometry–based proteomics , 2008, Nature Methods.

[15]  A. G. de la Fuente,et al.  Linking the Proteins—elucidation of Proteome-scale Networks Using Mass Spectrometry , 2009 .

[16]  Michael K. Coleman,et al.  Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae. , 2006, Journal of proteome research.

[17]  J. V. Moran,et al.  Initial sequencing and analysis of the human genome. , 2001, Nature.

[18]  Stefano Toppo,et al.  Functional Interaction of Phospholipid Hydroperoxide Glutathione Peroxidase with Sperm Mitochondrion-associated Cysteine-rich Protein Discloses the Adjacent Cysteine Motif as a New Substrate of the Selenoperoxidase* , 2005, Journal of Biological Chemistry.

[19]  Bo Xu,et al.  Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis , 2013, Clinical Proteomics.

[20]  Kelvin H Lee,et al.  Shotgun proteomics using the iTRAQ isobaric tags. , 2006, Briefings in functional genomics & proteomics.

[21]  Daniel B. Martin,et al.  Computational prediction of proteotypic peptides for quantitative proteomics , 2007, Nature Biotechnology.

[22]  Claudia Giachino,et al.  A New Paradigm in Cardiac Regeneration: The Mesenchymal Stem Cell Secretome , 2015, Stem cells international.

[23]  N. Anderson,et al.  The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. , 2010, Clinical chemistry.

[24]  Philippe Amouyel,et al.  Predicting left ventricular remodeling after a first myocardial infarction by plasma proteome analysis , 2008, Proteomics.

[25]  Linfeng Wu,et al.  Role of spectral counting in quantitative proteomics , 2010, Expert review of proteomics.

[26]  M. Mann,et al.  MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification , 2008, Nature Biotechnology.

[27]  Pierluigi Mauri,et al.  A proteomic approach to the analysis of RNA degradosome composition in Escherichia coli. , 2008, Methods in enzymology.

[28]  Christoph H Borchers,et al.  The Application of Multiple Reaction Monitoring to Assess Apo A-I Methionine Oxidations in Diabetes and Cardiovascular Disease. , 2014, Translational proteomics.

[29]  Phillip C. Wright,et al.  An insight into iTRAQ: where do we stand now? , 2012, Analytical and Bioanalytical Chemistry.

[30]  Giancarlo Mauri,et al.  Availability of MudPIT data for classi(cid:28)cation of biological samples , 2012 .

[31]  Pierluigi Mauri,et al.  Analysis of the Escherichia coli RNA degradosome composition by a proteomic approach. , 2006, Biochimie.

[32]  O. Kvalheim,et al.  Pretreatment of mass spectral profiles: application to proteomic data. , 2007, Analytical chemistry.

[33]  M. Mann,et al.  Analysis of proteins and proteomes by mass spectrometry. , 2001, Annual review of biochemistry.

[34]  A. Friedler,et al.  Identifying protein-protein interaction sites using peptide arrays. , 2014, Journal of visualized experiments : JoVE.

[35]  Giampaolo Merlini,et al.  Reliable typing of systemic amyloidoses through proteomic analysis of subcutaneous adipose tissue. , 2012, Blood.

[36]  Liangliang Sun,et al.  Capillary zone electrophoresis for analysis of complex proteomes using an electrokinetically pumped sheath flow nanospray interface , 2014, Proteomics.

[37]  M. Mann,et al.  In-gel digestion for mass spectrometric characterization of proteins and proteomes , 2006, Nature Protocols.

[38]  Bin Ma,et al.  PEAKS DB: De Novo Sequencing Assisted Database Search for Sensitive and Accurate Peptide Identification* , 2011, Molecular & Cellular Proteomics.

[39]  Ming Li,et al.  PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry. , 2003, Rapid communications in mass spectrometry : RCM.

[40]  J. Yates,et al.  A model for random sampling and estimation of relative protein abundance in shotgun proteomics. , 2004, Analytical chemistry.

[41]  S. Bryant,et al.  Open mass spectrometry search algorithm. , 2004, Journal of proteome research.

[42]  Richard Bonneau,et al.  Integrated inference and analysis of regulatory networks from multi-level measurements. , 2012, Methods in cell biology.

[43]  Konstantinos Thalassinos,et al.  A comparison of labeling and label-free mass spectrometry-based proteomics approaches. , 2009, Journal of proteome research.

[44]  Cathy H. Wu,et al.  Integrative Computational and Experimental Approaches to Establish a Post-Myocardial Infarction Knowledge Map , 2014, PLoS Comput. Biol..

[45]  R. Aebersold,et al.  Scoring proteomes with proteotypic peptide probes , 2005, Nature Reviews Molecular Cell Biology.

[46]  B. Searle,et al.  A Face in the Crowd: Recognizing Peptides Through Database Search* , 2011, Molecular & Cellular Proteomics.

[47]  John D. Venable,et al.  Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra , 2004, Nature Methods.

[48]  Tony J. Parker,et al.  A Comparison of Methods for Classifying Clinical Samples Based on Proteomics Data: A Case Study for Statistical and Machine Learning Approaches , 2011, PloS one.

[49]  Zengyou He,et al.  Technical, bioinformatical and statistical aspects of liquid chromatography-mass spectrometry (LC-MS) and capillary electrophoresis-mass spectrometry (CE-MS) based clinical proteomics: a critical assessment. , 2009, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[50]  Y. Zhang,et al.  IntAct—open source resource for molecular interaction data , 2006, Nucleic Acids Res..

[51]  Manuel Mayr,et al.  Method for protein subfractionation of cardiovascular tissues before DIGE analysis. , 2012, Methods in molecular biology.

[52]  Pier Giorgio Righetti,et al.  Immobilized pH gradients , 2009, Electrophoresis.

[53]  Gary D Bader,et al.  A travel guide to Cytoscape plugins , 2012, Nature Methods.

[54]  M. Mann,et al.  MSQuant, an open source platform for mass spectrometry-based quantitative proteomics. , 2010, Journal of proteome research.

[55]  Y. Mechref,et al.  ProteinQuant Suite: a bundle of automated software tools for label-free quantitative proteomics. , 2008, Rapid communications in mass spectrometry : RCM.

[56]  Wayne F. Patton,et al.  A thousand points of light: The application of fluorescence detection technologies to two‐dimensional gel electrophoresis and proteomics , 2000, Electrophoresis.

[57]  Alessandro Pingitore,et al.  Regional mapping of myocardial hibernation phenotype in idiopathic end-stage dilated cardiomyopathy , 2014, Journal of cellular and molecular medicine.

[58]  H. Schägger Tricine–SDS-PAGE , 2006, Nature Protocols.

[59]  Vinh Nguyen,et al.  Visual Integration of Quantitative Proteomic Data, Pathways, and Protein Interactions , 2010, IEEE Transactions on Visualization and Computer Graphics.

[60]  P. Pevzner,et al.  The Generating Function of CID, ETD, and CID/ETD Pairs of Tandem Mass Spectra: Applications to Database Search* , 2010, Molecular & Cellular Proteomics.

[61]  Xin Li,et al.  Quantitative profiling of the rat heart myoblast secretome reveals differential responses to hypoxia and re-oxygenation stress. , 2014, Journal of proteomics.

[62]  Martin Kuiper,et al.  BiNGO: a Cytoscape plugin to assess overrepresentation of Gene Ontology categories in Biological Networks , 2005, Bioinform..

[63]  Michaela Scigelova,et al.  Multidimensional protein identification technology for clinical proteomic analysis , 2009, Clinical chemistry and laboratory medicine.

[64]  Seungjin Choi,et al.  Inference of dynamic networks using time-course data , 2014, Briefings Bioinform..

[65]  L. Hood,et al.  A personal view on systems medicine and the emergence of proactive P4 medicine: predictive, preventive, personalized and participatory. , 2012, New biotechnology.

[66]  T. Yip,et al.  New desorption strategies for the mass spectrometric analysis of macromolecules , 1993 .

[67]  J. Coorssen,et al.  2DE: the phoenix of proteomics. , 2014, Journal of proteomics.

[68]  Lennart Martens,et al.  XTandem Parser: An open‐source library to parse and analyse X!Tandem MS/MS search results , 2010, Proteomics.

[69]  Masoud Nikravesh,et al.  Feature Extraction - Foundations and Applications , 2006, Feature Extraction.

[70]  Magnus Palmblad,et al.  Mass spectrometry in clinical proteomics – from the present to the future , 2008, Proteomics. Clinical applications.

[71]  Gary D. Bader,et al.  clusterMaker: a multi-algorithm clustering plugin for Cytoscape , 2011, BMC Bioinformatics.

[72]  Richard D. Smith,et al.  Protein co-expression network analysis (ProCoNA) , 2013, Journal of Clinical Bioinformatics.

[73]  Gary D. Bader,et al.  An automated method for finding molecular complexes in large protein interaction networks , 2003, BMC Bioinformatics.

[74]  Martin Eisenacher,et al.  Implementing Data Standards: A report on the HUPOPSI Workshop September 2009, Toronto, Canada , 2010, Proteomics.

[75]  Gennifer E. Merrihew,et al.  Deconvolution of mixture spectra from ion-trap data-independent-acquisition tandem mass spectrometry. , 2010, Analytical chemistry.

[76]  Damon May,et al.  Open-source platform for the analysis of liquid chromatography-mass spectrometry (LC-MS) data. , 2008, Methods in molecular biology.

[77]  Lan Huang,et al.  Comprehensive Analysis of a Multidimensional Liquid Chromatography Mass Spectrometry Dataset Acquired on a Quadrupole Selecting, Quadrupole Collision Cell, Time-of-flight Mass Spectrometer , 2005, Molecular & Cellular Proteomics.

[78]  John R Yates,et al.  Large-scale protein identification using mass spectrometry. , 2003, Biochimica et biophysica acta.

[79]  Yang Liu,et al.  VisANT 4.0: Integrative network platform to connect genes, drugs, diseases and therapies , 2013, Nucleic Acids Res..

[80]  P. Ford,et al.  Immunological techniques: ELISA, flow cytometry, and immunohistochemistry. , 2010, Methods in molecular biology.

[81]  Valmir Carneiro Barbosa,et al.  PatternLab for proteomics: a tool for differential shotgun proteomics , 2008, BMC Bioinformatics.

[82]  Pietro Brunetti,et al.  Automated Extraction of Proteotypic Peptides by Shotgun Proteomic Experiments: A New Computational Tool and Two Actual Cases , 2015 .

[83]  John R Yates,et al.  Multidimensional separations for protein/peptide analysis in the post-genomic era. , 2002, BioTechniques.

[84]  Stephen O. David,et al.  A novel experimental design for comparative two‐dimensional gel analysis: Two‐dimensional difference gel electrophoresis incorporating a pooled internal standard , 2003, Proteomics.

[85]  Bindu Nanduri,et al.  Prediction of peptides observable by mass spectrometry applied at the experimental set level , 2007, BMC Bioinformatics.

[86]  J. Xuan,et al.  Classification algorithms for phenotype prediction in genomics and proteomics. , 2008, Frontiers in bioscience : a journal and virtual library.

[87]  Caroline Dive,et al.  Quantitative mass spectrometry-based techniques for clinical use: Biomarker identification and quantification , 2008, Journal of Chromatography B.

[88]  Nichole L. King,et al.  The PeptideAtlas Project , 2010, Proteome Bioinformatics.

[89]  Robertson Craig,et al.  Open source system for analyzing, validating, and storing protein identification data. , 2004, Journal of proteome research.

[90]  Amaya Albalat,et al.  Capillary electrophoresis interfaced with a mass spectrometer (CE-MS): technical considerations and applicability for biomarker studies in animals. , 2014, Current protein & peptide science.

[91]  Wen Gao,et al.  pFind 2.0: a software package for peptide and protein identification via tandem mass spectrometry. , 2007, Rapid communications in mass spectrometry : RCM.

[92]  P. O’Farrell High resolution two-dimensional electrophoresis of proteins. , 1975, The Journal of biological chemistry.

[93]  M. Mann,et al.  Exponentially Modified Protein Abundance Index (emPAI) for Estimation of Absolute Protein Amount in Proteomics by the Number of Sequenced Peptides per Protein*S , 2005, Molecular & Cellular Proteomics.

[94]  Harald Mischak,et al.  Left ventricular diastolic function in relation to the urinary proteome: A proof-of-concept study in a general population , 2014, International journal of cardiology.

[95]  Annamaria Colao,et al.  The circulating level of FABP3 is an indirect biomarker of microRNA-1. , 2013, Journal of the American College of Cardiology.

[96]  Martin von Bergen,et al.  DIGE Proteome Analysis Reveals Suitability of Ischemic Cardiac In Vitro Model for Studying Cellular Response to Acute Ischemia and Regeneration , 2012, PloS one.

[97]  Alexander Scherl,et al.  Clinical protein mass spectrometry. , 2015, Methods.

[98]  Yi-Kuo Yu,et al.  Assigning statistical significance to proteotypic peptides via database searches. , 2011, Journal of proteomics.

[99]  Francesca Brambilla,et al.  Multidimensional protein identification technology for direct-tissue proteomics of heart. , 2013, Methods in molecular biology.

[100]  Gary D Bader,et al.  Pathway analysis of dilated cardiomyopathy using global proteomic profiling and enrichment maps , 2010, Proteomics.

[101]  Daehee Hwang,et al.  From proteomics toward systems biology: integration of different types of proteomics data into network models. , 2008, BMB reports.

[102]  Nuno Bandeira,et al.  False discovery rates in spectral identification , 2012, BMC Bioinformatics.

[103]  Hua Xu,et al.  Sub-proteomic fractionation, iTRAQ, and OFFGEL-LC-MS/MS approaches to cardiac proteomics. , 2010, Journal of proteomics.

[104]  Scott A McLuckey,et al.  'Top down' protein characterization via tandem mass spectrometry. , 2002, Journal of mass spectrometry : JMS.

[105]  J. Yates,et al.  An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database , 1994, Journal of the American Society for Mass Spectrometry.

[106]  Hans Lehrach,et al.  Profiling humoral autoimmune repertoire of dilated cardiomyopathy (DCM) patients and development of a disease‐associated protein chip , 2006, Proteomics.

[107]  Giancarlo Mauri,et al.  Stratification of biological samples based on proteomics data , 2013 .

[108]  D. Catalucci,et al.  A comparative MudPIT analysis identifies different expression profiles in heart compartments , 2011, Proteomics.

[109]  Hongyu Zhao,et al.  Multiple Peak Alignment in Sequential Data Analysis: A Scale-Space-Based Approach , 2006, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[110]  James A Hill,et al.  ProteomeCommons.org collaborative annotation and project management resource integrated with the Tranche repository. , 2010, Journal of proteome research.

[111]  Chao Zhang,et al.  NOA: a cytoscape plugin for network ontology analysis , 2013, Bioinform..

[112]  Bobbie-Jo M Webb-Robertson,et al.  Support vector machines for improved peptide identification from tandem mass spectrometry database search. , 2009, Methods in molecular biology.

[113]  M. Mann,et al.  More than 100,000 detectable peptide species elute in single shotgun proteomics runs but the majority is inaccessible to data-dependent LC-MS/MS. , 2011, Journal of proteome research.

[114]  Knut Reinert,et al.  OpenMS – An open-source software framework for mass spectrometry , 2008, BMC Bioinformatics.

[115]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[116]  R Vanholder,et al.  Chitinase-like Proteins are Candidate Biomarkers for Sepsis-induced Acute Kidney Injury* , 2012, Molecular & Cellular Proteomics.

[117]  Alexander Schmidt,et al.  Critical assessment of proteome‐wide label‐free absolute abundance estimation strategies , 2013, Proteomics.

[118]  Damian Szklarczyk,et al.  STRING v9.1: protein-protein interaction networks, with increased coverage and integration , 2012, Nucleic Acids Res..

[119]  A. Scarpa,et al.  Identification of proteins released by pancreatic cancer cells by multidimensional protein identification technology: a strategy for identification of novel cancer markers , 2005, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[120]  Marcus Bantscheff,et al.  Ion coalescence of neutron encoded TMT 10-plex reporter ions. , 2014, Analytical chemistry.

[121]  Yu-Fang Jin,et al.  Transformative Impact of Proteomics on Cardiovascular Health and Disease: A Scientific Statement From the American Heart Association , 2015, Circulation.

[122]  Sanjeewa Gamagedara,et al.  Biomarker analysis for prostate cancer diagnosis using LC-MS and CE-MS. , 2011, Bioanalysis.

[123]  Giampaolo Merlini,et al.  Shotgun protein profile of human adipose tissue and its changes in relation to systemic amyloidoses. , 2013, Journal of proteome research.

[124]  Matthias Mann,et al.  Innovations: Functional and quantitative proteomics using SILAC , 2006, Nature Reviews Molecular Cell Biology.

[125]  Hanno Steen,et al.  Optimization of cell lysis and protein digestion protocols for the analysis of HeLa S3 cells by LC‐MS/MS , 2011, Proteomics.

[126]  Martin Eisenacher,et al.  Autoimmune profiling with protein microarrays in clinical applications. , 2014, Biochimica et biophysica acta.

[127]  Matej Oresic,et al.  MZmine 2: Modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data , 2010, BMC Bioinformatics.

[128]  A. Barabasi,et al.  Network biology: understanding the cell's functional organization , 2004, Nature Reviews Genetics.

[129]  Robertson Craig,et al.  The use of proteotypic peptide libraries for protein identification. , 2005, Rapid communications in mass spectrometry : RCM.

[130]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[131]  Greg Maguire,et al.  Stem cell therapy without the cells , 2013, Communicative & integrative biology.

[132]  Susumu Goto,et al.  Systems biology approaches and pathway tools for investigating cardiovascular disease. , 2009, Molecular bioSystems.

[133]  Bing Zhang,et al.  Network-assisted protein identification and data interpretation in shotgun proteomics , 2009, Molecular systems biology.

[134]  Alejandro Cifuentes,et al.  Metabolomics, peptidomics and proteomics applications of capillary electrophoresis-mass spectrometry in Foodomics: a review. , 2013, Analytica chimica acta.

[135]  N. Samatova,et al.  Detecting differential and correlated protein expression in label-free shotgun proteomics. , 2006, Journal of proteome research.

[136]  Ludovic C. Gillet,et al.  Targeted Data Extraction of the MS/MS Spectra Generated by Data-independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis* , 2012, Molecular & Cellular Proteomics.

[137]  Tao Xu,et al.  Bioinformatics Applications Note Sequence Analysis Xdia: Improving on the Label-free Data-independent Analysis , 2022 .

[138]  Allan Kuchinsky,et al.  Mosaic: making biological sense of complex networks , 2012, Bioinform..

[139]  Sandhya Rani,et al.  Human Protein Reference Database—2009 update , 2008, Nucleic Acids Res..

[140]  Mark S Friedrichs,et al.  Changes in the protein expression of yeast as a function of carbon source. , 2003, Journal of proteome research.

[141]  Yanhui Hu,et al.  Integrating protein-protein interaction networks with phenotypes reveals signs of interactions , 2013, Nature Methods.

[142]  Uta Ceglarek,et al.  Sample preparation strategies for targeted proteomics via proteotypic peptides in human blood using liquid chromatography tandem mass spectrometry , 2015, Proteomics. Clinical applications.

[143]  M. Mann,et al.  Deep and Highly Sensitive Proteome Coverage by LC-MS/MS Without Prefractionation* , 2011, Molecular & Cellular Proteomics.

[144]  Rolf Apweiler,et al.  The Proteomics Identifications Database (PRIDE) and the ProteomExchange Consortium: making proteomics data accessible , 2006, Expert review of proteomics.

[145]  Giovanni Scardoni,et al.  Analyzing biological network parameters with CentiScaPe , 2009, Bioinform..

[146]  James P. Reilly,et al.  A computational approach toward label-free protein quantification using predicted peptide detectability , 2006, ISMB.

[147]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[148]  D. Tabb,et al.  MyriMatch: highly accurate tandem mass spectral peptide identification by multivariate hypergeometric analysis. , 2007, Journal of proteome research.

[149]  Giovanni Scardoni,et al.  An approach to investigate intracellular protein network responses. , 2014, Chemical research in toxicology.

[150]  D. N. Perkins,et al.  Probability‐based protein identification by searching sequence databases using mass spectrometry data , 1999, Electrophoresis.

[151]  Jozef Šesták,et al.  Instrument platforms for nano liquid chromatography. , 2015, Journal of chromatography. A.

[152]  Sophia Tsoka,et al.  Gene Network and Proteomic Analyses of Cardiac Responses to Pathological and Physiological Stress , 2013, Circulation. Cardiovascular genetics.

[153]  Steven C Hall,et al.  Acid-catalyzed oxygen-18 labeling of peptides. , 2009, Analytical chemistry.