The Gaussian derivative model for spatial-temporal vision: II. Cortical data.

Receptive fields of simple cells in the primate visual cortex were well fit in the space and time domains by the Gaussian Derivative (GD) model for spatio-temporal vision. All 23 fields in the data sample could be fit by one equation. varying only a single shape number and nine geometric transformation parameters. A difference-of-offset-Gaussians (DOOG) mechanism for the GD model also fit the data well. Other models tested did not fit the data as well as or as succinctly, or failed to converge on a unique solution, indicating over-parameterization. An efficient computational algorithm was found for the GD model which produced robust estimates of the direction and speed of moving objects in real scenes.

[1]  L. Palmer,et al.  Contribution of linear spatiotemporal receptive field structure to velocity selectivity of simple cells in area 17 of cat , 1989, Vision Research.

[2]  J. van Santen,et al.  Temporal covariance model of human motion perception. , 1984, Journal of the Optical Society of America. A, Optics and image science.

[3]  D Marr,et al.  Directional selectivity and its use in early visual processing , 1981, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[4]  K. H. Britten,et al.  Neuronal mechanisms of motion perception. , 1990, Cold Spring Harbor symposia on quantitative biology.

[5]  J. Canny Finding Edges and Lines in Images , 1983 .

[6]  D. Tolhurst,et al.  Evaluation of a linear model of directional selectivity in simple cells of the cat's striate cortex , 1991, Visual Neuroscience.

[7]  Ramesh C. Jain,et al.  Illumination independent change detection for real world image sequences , 1989, Comput. Vis. Graph. Image Process..

[8]  Ronald M. Lesperance,et al.  The Gaussian derivative model for spatial-temporal vision: I. Cortical model. , 2001, Spatial vision.

[9]  P. Romano Association for Research in Vision and Ophthalmology. , 2000, Binocular vision & strabismus quarterly.

[10]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Jonathan A. Marshall,et al.  Self-organizing neural networks for perception of visual motion , 1990, Neural Networks.

[12]  D G Stork,et al.  Do Gabor functions provide appropriate descriptions of visual cortical receptive fields? , 1990, Journal of the Optical Society of America. A, Optics and image science.

[13]  Richard A. Young,et al.  SIMULATION OF HUMAN RETINAL FUNCTION WITH THE GAUSSIAN DERIVATIVE MODEL. , 1986 .

[14]  P Heggelund,et al.  Quantitative studies of the discharge fields of single cells in cat striate cortex. , 1986, The Journal of physiology.

[15]  Lowell D. Jacobson,et al.  Structural testing of multi-input linear—nonlinear cascade models for cells in macaque striate cortex , 1993, Vision Research.

[16]  R. L. Valois,et al.  The orientation and direction selectivity of cells in macaque visual cortex , 1982, Vision Research.

[17]  渡部 善隆 《急ぐ人のための》Mathematica Graphics入門 , 1995 .

[18]  Joseph K. Kearney,et al.  Optical Flow Estimation: An Error Analysis of Gradient-Based Methods with Local Optimization , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  David J. C. MacKay,et al.  Analysis of Linsker's Simulations of Hebbian Rules , 1990, Neural Computation.

[20]  Andrew M. Derrington,et al.  Apparent motion from luminance change: Sequence discriminators see it too , 1985, Vision Research.

[21]  P. Thompson,et al.  Human speed perception is contrast dependent , 1992, Vision Research.

[22]  Richard A. Young,et al.  GAUSSIAN DERIVATIVE MODEL FOR MACHINE VISION: VISUAL CORTEX SIMULATION. , 1986 .

[23]  Jian Yang,et al.  Bottom-up visual image processing probed with weighted hermite polynomials , 1995, Neural Networks.

[24]  D Marr,et al.  Theory of edge detection , 1979, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[25]  Layne T. Watson,et al.  A Gaussian derivative based version of JPEG for image compression and decompression , 1995, IEEE Trans. Image Process..

[26]  S Marcelja,et al.  Mathematical description of the responses of simple cortical cells. , 1980, Journal of the Optical Society of America.

[27]  J Zhang,et al.  Structure of visual perception. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[28]  O. Braddick A short-range process in apparent motion. , 1974, Vision research.

[29]  D. G. Albrecht,et al.  Motion selectivity and the contrast-response function of simple cells in the visual cortex , 1991, Visual Neuroscience.

[30]  J. Robson,et al.  Application of fourier analysis to the visibility of gratings , 1968, The Journal of physiology.

[31]  D. Heeger Nonlinear model of neural responses in cat visual cortex. , 1991 .

[32]  Michael S. Landy,et al.  Spatiotemporal Receptive Fields and Direction Selectivity , 1991 .

[33]  Michael S. Landy,et al.  Nonlinear Model of Neural Responses in Cat Visual Cortex , 1991 .

[34]  Y. Chino,et al.  Orientation bias of neurons in the lateral geniculate nucleus of macaque monkeys , 1990, Visual Neuroscience.

[35]  James T. Todd,et al.  The perception of globally coherent motion , 1992, Vision Research.

[36]  Ken Nakayama,et al.  Biological image motion processing: A review , 1985, Vision Research.

[37]  Richard A. Young,et al.  Oh say, can you see? The physiology of vision , 1991, Electronic Imaging.

[38]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[39]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[40]  D. Pollen,et al.  Interneuronal interaction between members of quadrature phase and anti-phase pairs in the cat's visual cortex , 1992, Vision Research.

[41]  R. Young GAUSSIAN DERIVATIVE THEORY OF SPATIAL VISION: ANALYSIS OF CORTICAL CELL RECEPTIVE FIELD LINE-WEIGHTING PROFILES. , 1985 .

[42]  F. Amthor,et al.  Nonlinearity of the inhibition underlying retinal directional selectivity , 1991, Visual Neuroscience.

[43]  D. Rose Mechanisms underlying the receptive field properties of neurons in cat visual cortex , 1979, Vision Research.

[44]  D. Pollen,et al.  Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. , 1985, The Journal of physiology.

[45]  O J Braddick,et al.  Low-level and high-level processes in apparent motion. , 1980, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[46]  Richard A. Young,et al.  The Gaussian Derivative Model for Machine and Biological Image Processing , 1985 .

[47]  D. G. Albrecht,et al.  Visual cortical receptive fields in monkey and cat: Spatial and temporal phase transfer function , 1989, Vision Research.

[48]  G. Orban,et al.  Velocity sensitivity and direction selectivity of neurons in areas V1 and V2 of the monkey: influence of eccentricity. , 1986, Journal of neurophysiology.

[49]  A. L. Humphrey,et al.  Spatial and temporal response properties of lagged and nonlagged cells in cat lateral geniculate nucleus. , 1990, Journal of neurophysiology.

[50]  P Perona,et al.  Preattentive texture discrimination with early vision mechanisms. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[51]  Representing contrast detection as an eigenvalue problem. , 1999, Spatial vision.

[52]  RussLL L. Ds Vnlos,et al.  SPATIAL FREQUENCY SELECTIVITY OF CELLS IN MACAQUE VISUAL CORTEX , 2022 .

[53]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[54]  R. Jennrich,et al.  Dud, A Derivative-Free Algorithm for Nonlinear Least Squares , 1978 .

[55]  G. Orban Velocity Tuned Cortical Cells and Human Velocity Discrimination , 1985 .

[56]  I.D.G. Macleod,et al.  Comments on "Techniques for edge detection" , 1972 .

[57]  Jitendra Malik,et al.  A computational model of texture segmentation , 1989, Proceedings CVPR '89: IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[58]  M. Livingstone,et al.  Mechanisms of Direction Selectivity in Macaque V1 , 1998, Neuron.

[59]  A. Parker,et al.  Two-dimensional spatial structure of receptive fields in monkey striate cortex. , 1988, Journal of the Optical Society of America. A, Optics and image science.

[60]  R. B. Pinter,et al.  Nonlinear Vision: Determination of Neural Receptive Fields, Function, and Networks , 1992 .

[61]  Jorge J. Moré,et al.  User Guide for Minpack-1 , 1980 .

[62]  R. Shapley,et al.  Linear mechanism of orientation tuning in the retina and lateral geniculate nucleus of the cat. , 1987, Journal of neurophysiology.

[63]  John P. Oakley,et al.  Efficient method for finding the position of object boundaries to sub-pixel precision , 1991, Image Vis. Comput..

[64]  F. M. D. Monasterio Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques. , 1978 .

[65]  Stephen Wolfram,et al.  The Mathematica Book , 1996 .

[66]  R A Young,et al.  The Gaussian derivative model for spatial vision: I. Retinal mechanisms. , 1988, Spatial vision.

[67]  A neural network model for textural segmentation , 1992 .

[68]  Daniel A. Pollen,et al.  Visual cortical neurons as localized spatial frequency filters , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[69]  David R. Badcock,et al.  Two-stage analysis of the motion of 2-dimensional patterns, what is the first stage? , 1992, Vision Research.

[70]  P. Thompson Perceived rate of movement depends on contrast , 1982, Vision Research.

[71]  R. Marrocco,et al.  Predictions about chromatic receptive fields assuming random cone connections. , 1989, Journal of theoretical biology.

[72]  George Mather,et al.  Luminance change generates apparent movement: Implications for models of directional specificity in the human visual system , 1984, Vision Research.

[73]  R. Shapley,et al.  Directional selectivity and spatiotemporal structure of receptive fields of simple cells in cat striate cortex. , 1991, Journal of neurophysiology.

[74]  Apparent motion from luminance change: Further comments on candidate mechanisms , 1985, Vision Research.

[75]  Russell L. De Valois,et al.  PII: S0042-6989(00)00210-8 , 2000 .

[76]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[77]  David R. Badcock,et al.  Analysis of the motion of 2-dimensional patterns: Evidence for a second-order process , 1992, Vision Research.

[78]  Raymond B. Cattell,et al.  Handbook of multivariate experimental psychology , 1968 .

[79]  D. Tolhurst,et al.  The effect of threshold on the relationship between the receptive-field profile and the spatial-frequency tuning cure in simple cells of the cat's striate cortex , 1989, Visual Neuroscience.

[80]  R. L. de Valois,et al.  Relationship between spatial-frequency and orientation tuning of striate-cortex cells. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[81]  K. Nakayama,et al.  The aperture problem—I. Perception of nonrigidity and motion direction in translating sinusoidal lines , 1988, Vision Research.

[82]  Professor Dr. Guy A. Orban Neuronal Operations in the Visual Cortex , 1983, Studies of Brain Function.

[83]  E H Adelson,et al.  Spatiotemporal energy models for the perception of motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[84]  Keiji Tanaka,et al.  Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[85]  Alex Pentland,et al.  Local Shading Analysis , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[86]  A J Ahumada,et al.  Model of human visual-motion sensing. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[87]  B Moulden,et al.  Light-dark asymmetries in the Craik-Cornsweet-O'Brien illusion and a new model of brightness coding. , 1990, Spatial vision.

[88]  R. Shapley,et al.  Linear mechanisms of directional selectivity in simple cells of cat striate cortex. , 1987, Proceedings of the National Academy of Sciences of the United States of America.