Adjacent visual representations of self-motion in different reference frames

Recent investigations indicate that retinal motion is not directly available for perception when moving around [Souman JL, et al. (2010) J Vis 10:14], possibly pointing to suppression of retinal speed sensitivity in motion areas. Here, we investigated the distribution of retinocentric and head-centric representations of self-rotation in human lower-tier visual motion areas. Functional MRI responses were measured to a set of visual self-motion stimuli with different levels of simulated gaze and simulated head rotation. A parametric generalized linear model analysis of the blood oxygen level-dependent responses revealed subregions of accessory V3 area, V6+ area, middle temporal area, and medial superior temporal area that were specifically modulated by the speed of the rotational flow relative to the eye and head. Pursuit signals, which link the two reference frames, were also identified in these areas. To our knowledge, these results are the first demonstration of multiple visual representations of self-motion in these areas. The existence of such adjacent representations points to early transformations of the reference frame for visual self-motion signals and a topography by visual reference frame in lower-order motion-sensitive areas. This suggests that visual decisions for action and perception may take into account retinal and head-centric motion signals according to task requirements.

[1]  Bijan Pesaran,et al.  Area MSTd neurons encode visual stimuli in eye coordinates during fixation and pursuit. , 2011, Journal of neurophysiology.

[2]  S. Rushton,et al.  Optic Flow Processing for the Assessment of Object Movement during Ego Movement , 2009, Current Biology.

[3]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[4]  J. Movshon,et al.  Modulation of visual signals in macaque MT and MST neurons during pursuit eye movement. , 2009, Journal of Neurophysiology.

[5]  Takeo Watanabe,et al.  Separate Processing of Different Global-Motion Structures in Visual Cortex Is Revealed by fMRI , 2005, Current Biology.

[6]  Yale E. Cohen,et al.  A common reference frame for movement plans in the posterior parietal cortex , 2002, Nature Reviews Neuroscience.

[7]  M. Ernst,et al.  Humans do not have direct access to retinal flow during walking. , 2010, Journal of vision.

[8]  C. Galletti,et al.  Neuronal mechanisms for detection of motion in the field of view , 2003, Neuropsychologia.

[9]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[10]  B J Geesaman,et al.  Maps of complex motion selectivity in the superior temporal cortex of the alert macaque monkey: a double-label 2-deoxyglucose study. , 1997, Cerebral cortex.

[11]  C. Galletti,et al.  Gaze-dependent visual neurons in area V3A of monkey prestriate cortex , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Ravi S. Menon,et al.  Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. , 2001, Journal of neurophysiology.

[13]  W K Page,et al.  MST neuronal responses to heading direction during pursuit eye movements. , 1999, Journal of neurophysiology.

[14]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[15]  A. V. van den Berg,et al.  Heading detection using motion templates and eye velocity gain fields , 1998, Vision Research.

[16]  R. Andersen,et al.  Coding of intention in the posterior parietal cortex , 1997, Nature.

[17]  F. Sharp,et al.  Diffusible neurotrophic factors for thalamic neurons are released from target neocortex and non-target cerebellum. , 1990, Progress in brain research.

[18]  D. Norris,et al.  Very high‐resolution three‐dimensional functional MRI of the human visual cortex with elimination of large venous vessels , 2007, NMR in biomedicine.

[19]  F. Bremmer,et al.  Perception of self-motion from visual flow , 1999, Trends in Cognitive Sciences.

[20]  Maninder K. Kahlon,et al.  Visual Motion Analysis for Pursuit Eye Movements in Area MT of Macaque Monkeys , 1999, The Journal of Neuroscience.

[21]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[22]  C. Galletti,et al.  Functional Properties of Neurons in the Anterior Bank of the Parieto‐occipital Sulcus of the Macaque Monkey , 1991, The European journal of neuroscience.

[23]  P. P. Battaglini,et al.  Parietal neurons encoding spatial locations in craniotopic coordinates , 2004, Experimental Brain Research.

[24]  G. DeAngelis,et al.  Multimodal Coding of Three-Dimensional Rotation and Translation in Area MSTd: Comparison of Visual and Vestibular Selectivity , 2007, The Journal of Neuroscience.

[25]  A. V. van den Berg Robustness of perception of heading from optic flow. , 1992, Vision research.

[26]  Svetlana S. Georgieva,et al.  The Processing of Three-Dimensional Shape from Disparity in the Human Brain , 2009, The Journal of Neuroscience.

[27]  Velia Cardin,et al.  Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. , 2010, Cerebral cortex.

[28]  P. Thier,et al.  Posterior Parietal Cortex Neurons Encode Target Motion in World-Centered Coordinates , 2004, Neuron.

[29]  Doris Y. Tsao,et al.  Stereopsis Activates V3A and Caudal Intraparietal Areas in Macaques and Humans , 2003, Neuron.

[30]  C. Colby Action-Oriented Spatial Reference Frames in Cortex , 1998, Neuron.

[31]  Aya Takemura,et al.  MST neurons code for visual motion in space independent of pursuit eye movements. , 2007, Journal of neurophysiology.

[32]  A. V. van den Berg,et al.  Temporal integration of focus position signal during compensation for pursuit in optic flow. , 2010, Journal of vision.

[33]  Patrizia Fattori,et al.  Hand Orientation during Reach-to-Grasp Movements Modulates Neuronal Activity in the Medial Posterior Parietal Area V6A , 2009, The Journal of Neuroscience.

[34]  Tom C A Freeman,et al.  Do we have direct access to retinal image motion during smooth pursuit eye movements? , 2009, Journal of vision.

[35]  Daniel J. Hannon,et al.  Direction of self-motion is perceived from optical flow , 1988, Nature.

[36]  Ravi S. Menon,et al.  Representation of Head-Centric Flow in the Human Motion Complex , 2006, The Journal of Neuroscience.

[37]  C. Galletti,et al.  ‘Real-motion’ cells in area V3A of macaque visual cortex , 2004, Experimental Brain Research.

[38]  J. Movshon,et al.  Adaptive Temporal Integration of Motion in Direction-Selective Neurons in Macaque Visual Cortex , 2004, The Journal of Neuroscience.

[39]  D. Heeger,et al.  Retinotopy and Functional Subdivision of Human Areas MT and MST , 2002, The Journal of Neuroscience.

[40]  G. DeAngelis,et al.  A functional link between area MSTd and heading perception based on vestibular signals , 2007, Nature Neuroscience.

[41]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[42]  François Klam,et al.  ã Federation of European Neuroscience Societies Visual±vestibular interactive responses in the macaque ventral intraparietal area (VIP) , 2022 .

[43]  C. Galletti,et al.  Arm Movement‐related Neurons in the Visual Area V6A of the Macaque Superior Parietal Lobule , 1997, The European journal of neuroscience.

[44]  T D Albright,et al.  Cortical processing of visual motion. , 1993, Reviews of oculomotor research.

[45]  D. Burr,et al.  A cortical area that responds specifically to optic flow, revealed by fMRI , 2000, Nature Neuroscience.

[46]  G. Orban,et al.  Speed and direction selectivity of macaque middle temporal neurons. , 1993, Journal of neurophysiology.

[47]  P. Tse,et al.  V3A processes contour curvature as a trackable feature for the perception of rotational motion. , 2007, Cerebral cortex.

[48]  Ingrid R. Olson,et al.  The Representation of Object Distance: Evidence from Neuroimaging and Neuropsychology , 2009, Front. Hum. Neurosci..

[49]  R. Andersen,et al.  Intentional maps in posterior parietal cortex. , 2002, Annual review of neuroscience.

[50]  Michela Gamberini,et al.  ‘Arm‐reaching’ neurons in the parietal area V6A of the macaque monkey , 2001, The European journal of neuroscience.

[51]  C. Galletti,et al.  Human V6: The Medial Motion Area , 2009, Cerebral cortex.

[52]  C. Galletti,et al.  Wide-Field Retinotopy Defines Human Cortical Visual Area V6 , 2006, The Journal of Neuroscience.

[53]  C. Galletti,et al.  Eye Position Influence on the Parieto‐occipital Area PO (V6) of the Macaque Monkey , 1995, The European journal of neuroscience.

[54]  Yong Gu,et al.  Clustering of self-motion selectivity and visual response properties in macaque area MSTd. , 2008, Journal of neurophysiology.

[55]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[56]  K. Hoffmann,et al.  Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. , 1997, Journal of neurophysiology.

[57]  H. Sakata,et al.  From Three-Dimensional Space Vision to Prehensile Hand Movements: The Lateral Intraparietal Area Links the Area V3A and the Anterior Intraparietal Area in Macaques , 2001, The Journal of Neuroscience.

[58]  R. Andersen,et al.  Posterior parietal cortex. , 1989, Reviews of oculomotor research.

[59]  Jaap A. Beintema,et al.  The Mechanism of Interaction between Visual Flow and Eye Velocity Signals for Heading Perception , 2000, Neuron.

[60]  Andrew T. Smith,et al.  The Representation of Egomotion in the Human Brain , 2008, Current Biology.

[61]  Kenneth H. Britten,et al.  Mechanisms of self-motion perception. , 2008, Annual review of neuroscience.

[62]  C. Galletti,et al.  The cortical connections of area V6: an occipito‐parietal network processing visual information , 2001, The European journal of neuroscience.

[63]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[64]  C. Galletti,et al.  Brain location and visual topography of cortical area V6A in the macaque monkey , 1999, The European journal of neuroscience.