Relationship descriptors for interactive motion adaptation

This paper presents an interactive motion adaptation scheme for close interactions between skeletal characters and mesh structures, such as moving through restricted environments, and manipulating objects. This is achieved through a new spatial relationship-based representation, which describes the kinematics of the body parts by the weighted sum of translation vectors relative to points selectively sampled over the surfaces of the mesh structures. In contrast to previous discrete representations that either only handle static spatial relationships, or require offline, costly optimization processes, our continuous framework smoothly adapts the motion of a character to large updates of the mesh structures and character morphologies on-the-fly, while preserving the original context of the scene. The experimental results show that our method can be used for a wide range of applications, including motion retargeting, interactive character control and deformation transfer for scenes that involve close interactions. Our framework is useful for artists who need to design animated scenes interactively, and modern computer games that allow users to design their own characters, objects and environments.

[1]  Nadia Magnenat-Thalmann,et al.  Motion adaptation based on character shape , 2008 .

[2]  W ReynoldsCraig Flocks, herds and schools: A distributed behavioral model , 1987 .

[3]  Glen Berseth,et al.  Dynamic terrain traversal skills using reinforcement learning , 2015, ACM Trans. Graph..

[4]  Sergey Levine,et al.  Space-time planning with parameterized locomotion controllers , 2011, TOGS.

[5]  Okan Arikan,et al.  Interactive motion generation from examples , 2002, ACM Trans. Graph..

[6]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[7]  Yun Jiang,et al.  Hallucinated Humans as the Hidden Context for Labeling 3D Scenes , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[8]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[9]  Michael Gleicher,et al.  Motion editing with spacetime constraints , 1997, SI3D.

[10]  Alla Sheffer,et al.  Author manuscript, published in "ACM Transactions on Graphics (2012)" DOI: 10.1145/2185520.2185532 Design Preserving Garment Transfer , 2012 .

[11]  Zoran Popovic,et al.  Discovery of complex behaviors through contact-invariant optimization , 2012, ACM Trans. Graph..

[12]  Zoran Popovic,et al.  Contact-invariant optimization for hand manipulation , 2012, SCA '12.

[13]  James M. Rehg,et al.  Learning Visual Object Categories for Robot Affordance Prediction , 2010, Int. J. Robotics Res..

[14]  Luc Van Gool,et al.  What makes a chair a chair? , 2011, CVPR 2011.

[15]  Jessica K. Hodgins,et al.  Interactive control of avatars animated with human motion data , 2002, SIGGRAPH.

[16]  Ralph Gross,et al.  The CMU Motion of Body (MoBo) Database , 2001 .

[17]  Tomohiko Mukai,et al.  Motion rings for interactive gait synthesis , 2011, SI3D.

[18]  Jehee Lee,et al.  Motion patches: building blocks for virtual environments annotated with motion data , 2006, ACM Trans. Graph..

[19]  Yun Jiang,et al.  Infinite Latent Conditional Random Fields for Modeling Environments through Humans , 2013, Robotics: Science and Systems.

[20]  Taesoo Kwon,et al.  Group motion editing , 2008, SIGGRAPH 2008.

[21]  Christian Rössl,et al.  Laplacian surface editing , 2004, SGP '04.

[22]  Hyun Joon Shin,et al.  Physical touch-up of human motions , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[23]  Olga Sorkine-Hornung,et al.  Interference-aware geometric modeling , 2011, ACM Trans. Graph..

[24]  Franck Multon,et al.  Using task efficient contact configurations to animate creatures in arbitrary environments , 2014, Comput. Graph..

[25]  Thomas Jakobsen,et al.  Advanced Character Physics , 2003 .

[26]  Pat Hanrahan,et al.  SceneGrok: inferring action maps in 3D environments , 2014, ACM Trans. Graph..

[27]  C. Karen Liu,et al.  Online control of simulated humanoids using particle belief propagation , 2015, ACM Trans. Graph..

[28]  Sung Yong Shin,et al.  Planning biped locomotion using motion capture data and probabilistic roadmaps , 2003, TOGS.

[29]  M. V. D. Panne,et al.  Sampling-based contact-rich motion control , 2010, ACM Trans. Graph..

[30]  Alexei A. Efros,et al.  From 3D scene geometry to human workspace , 2011, CVPR 2011.

[31]  C. Karen Liu,et al.  Composition of complex optimal multi-character motions , 2006, SCA '06.

[32]  Kun Zhou,et al.  Deformation Transfer to Multi‐Component Objects , 2010, Comput. Graph. Forum.

[33]  Jehee Lee,et al.  Deformable Motion: Squeezing into Cluttered Environments , 2011, Comput. Graph. Forum.

[34]  Jehee Lee,et al.  Synchronized multi-character motion editing , 2009, ACM Trans. Graph..

[35]  Xi Zhao,et al.  Spatial relationship based scene analysis and synthesis , 2014 .

[36]  Edmond S. L. Ho,et al.  Spatial relationship preserving character motion adaptation , 2010, ACM Trans. Graph..

[37]  Yun Jiang,et al.  Hallucinating Humans for Learning Robotic Placement of Objects , 2012, ISER.

[38]  Zoran Popovic,et al.  Motion warping , 1995, SIGGRAPH.

[39]  Chonhyon Park,et al.  A Reachability-Based Planner for Sequences of Acyclic Contacts in Cluttered Environments , 2015, ISRR.

[40]  Zoran Popovic,et al.  Physically based motion transformation , 1999, SIGGRAPH.

[41]  Marc Alexa,et al.  Differential coordinates for local mesh morphing and deformation , 2003, The Visual Computer.

[42]  C. Karen Liu,et al.  Dextrous manipulation from a grasping pose , 2009, ACM Trans. Graph..

[43]  Baoquan Chen,et al.  Unsupervised co-segmentation of 3D shapes via affinity aggregation spectral clustering , 2013, Comput. Graph..

[44]  Thierry Siméon,et al.  Eurographics/siggraph Symposium on Computer Animation (2003) Visual Simulation of Ice Crystal Growth , 2022 .

[45]  Lucas Kovar,et al.  Motion graphs , 2002, SIGGRAPH '08.

[46]  Nancy S. Pollard,et al.  Efficient synthesis of physically valid human motion , 2003, ACM Trans. Graph..

[47]  Sung Yong Shin,et al.  Computer puppetry: An importance-based approach , 2001, TOGS.

[48]  Lucas Paletta,et al.  Learning Predictive Features in Affordance based Robotic Perception Systems , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  C. Karen Liu,et al.  Synthesis of concurrent object manipulation tasks , 2012, ACM Trans. Graph..

[50]  Jinxiang Chai,et al.  Motion graphs++ , 2012, ACM Trans. Graph..

[51]  Jessica K. Hodgins,et al.  Construction and optimal search of interpolated motion graphs , 2007, ACM Trans. Graph..

[52]  Charles F. Rose,et al.  Verbs and adverbs: multidimensional motion interpolation using radial basis functions , 1999 .

[53]  Petros Faloutsos,et al.  Interactive motion correction and object manipulation , 2007, SIGGRAPH '08.

[54]  Katsu Yamane,et al.  Animating non-humanoid characters with human motion data , 2010, SCA '10.

[55]  Ronan Boulic,et al.  An inverse kinematics architecture enforcing an arbitrary number of strict priority levels , 2004, The Visual Computer.

[56]  Tsuneo Yoshikawa,et al.  Analysis and Control of Robot Manipulators with Redundancy , 1983 .

[57]  Bernt Schiele,et al.  Functional Object Class Detection Based on Learned Affordance Cues , 2008, ICVS.

[58]  C. Karen Liu,et al.  Synthesis of complex dynamic character motion from simple animations , 2002, ACM Trans. Graph..

[59]  Ronan Boulic,et al.  Interactive motion deformation with prioritized constraints , 2004, SCA '04.

[60]  Nadia Magnenat-Thalmann,et al.  Motion adaptation based on character shape , 2008, Comput. Animat. Virtual Worlds.

[61]  James M. Rehg,et al.  Affordance Prediction via Learned Object Attributes , 2011 .

[62]  Michael Gleicher,et al.  Retargetting motion to new characters , 1998, SIGGRAPH.

[63]  Yun Jiang,et al.  Learning Object Arrangements in 3D Scenes using Human Context , 2012, ICML.

[64]  Sung Yong Shin,et al.  A hierarchical approach to interactive motion editing for human-like figures , 1999, SIGGRAPH.

[65]  M. V. D. Panne,et al.  SIMBICON: simple biped locomotion control , 2007, SIGGRAPH 2007.