Statistical computation and inference for functional data analysis

[1]  Grace Wahba,et al.  Spline Models for Observational Data , 1990 .

[2]  A. D. Diez Roux,et al.  Neighborhood characteristics associated with the location of food stores and food service places. , 2002, American journal of preventive medicine.

[3]  D. Titterington,et al.  Parameter estimation for hidden Markov chains , 2002 .

[4]  Catherine A. Sugar,et al.  Principal component models for sparse functional data , 1999 .

[5]  P. Diggle A Kernel Method for Smoothing Point Process Data , 1985 .

[6]  D. Ruppert Selecting the Number of Knots for Penalized Splines , 2002 .

[7]  M. Small,et al.  The Presence of Organizational Resources in Poor Urban Neighborhoods:An Analysis of Average and Contextual Effects , 2006 .

[8]  H. Müller,et al.  Methods of Canonical Analysis for Functional Data 1 , 2002 .

[9]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[10]  G. Celeux,et al.  An entropy criterion for assessing the number of clusters in a mixture model , 1996 .

[11]  N. Cressie,et al.  A dimension-reduced approach to space-time Kalman filtering , 1999 .

[12]  Jeng-Min Chiou,et al.  Functional clustering and identifying substructures of longitudinal data , 2007 .

[13]  Jianhua Z. Huang,et al.  Joint modelling of paired sparse functional data using principal components. , 2008, Biometrika.

[14]  William M. Rand,et al.  Objective Criteria for the Evaluation of Clustering Methods , 1971 .

[15]  B. Leroux Consistent estimation of a mixing distribution , 1992 .

[16]  Rebecca A. Betensky,et al.  Simultaneous confidence intervals based on the percentile bootstrap approach , 2008, Comput. Stat. Data Anal..

[17]  Michael T. Marsh,et al.  Equity measurement in facility location analysis: A review and framework , 1994 .

[18]  atherine,et al.  Finding the number of clusters in a data set : An information theoretic approach C , 2003 .

[19]  Wensheng Guo,et al.  SPLINE SMOOTHING FOR BIVARIATE DATA WITH APPLICATIONS TO ASSOCIATION BETWEEN HORMONES , 2000 .

[20]  L. Fahrmeir,et al.  PENALIZED STRUCTURED ADDITIVE REGRESSION FOR SPACE-TIME DATA: A BAYESIAN PERSPECTIVE , 2004 .

[21]  L. Anselin,et al.  Assessing Spatial Equity: An Evaluation of Measures of Accessibility to Public Playgrounds , 1998 .

[22]  D. Ruppert,et al.  On the asymptotics of penalized splines , 2008 .

[23]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[24]  M. Wand,et al.  Semiparametric Regression: Parametric Regression , 2003 .

[25]  Robin Haynes,et al.  Car travel time and accessibility by bus to general practitioner services: a study using patient registers and GIS. , 2002, Social science & medicine.

[26]  A. D. Diez Roux,et al.  Associations of neighborhood characteristics with the location and type of food stores. , 2006, American journal of public health.

[27]  Phaedon C. Kyriakidis,et al.  Geostatistical Space–Time Models: A Review , 1999 .

[28]  Yan Huang,et al.  On the Relationships between Clustering and Spatial Co-location Pattern Mining , 2006, ICTAI.

[29]  James O. Ramsay Functional Data Analysis , 2005 .

[30]  Tommi S. Jaakkola,et al.  A new approach to analyzing gene expression time series data , 2002, RECOMB '02.

[31]  N. Serban Clustering confidence sets , 2009 .

[32]  Catherine A. Smith,et al.  An Intercomparison of Methods for Finding Coupled Patterns in Climate Data , 1992 .

[33]  Geoffrey M. Jacquez,et al.  Area-based tests for association between spatial patterns , 2002, J. Geogr. Syst..

[34]  L. Wasserman,et al.  CATS , 2005 .

[35]  Nikolaos V. Tsekos,et al.  Curve Clustering with Spatial Constraints for Analysis of Spatiotemporal Data , 2007 .

[36]  H. Müller,et al.  Dynamical Correlation for Multivariate Longitudinal Data , 2005 .

[37]  S. Wood Thin plate regression splines , 2003 .

[38]  Catherine A. Sugar,et al.  Clustering for Sparsely Sampled Functional Data , 2003 .

[39]  Steven M. Graves Landscapes of Predation, Landscapes of Neglect: A Location Analysis of Payday Lenders and Banks , 2003, The Professional Geographer.

[40]  F. Vaida,et al.  Conditional Akaike information for mixed-effects models , 2005 .

[41]  B. Silverman,et al.  Some Aspects of the Spline Smoothing Approach to Non‐Parametric Regression Curve Fitting , 1985 .

[42]  Tom Larson WHY THERE WILL BE NO CHAIN SUPERMARKETS IN POOR INNER-CITY NEIGHBORHOODS , 2003 .

[43]  Ruben H. Zamar,et al.  Comparing the shapes of regression functions , 2000 .

[44]  G. Casella,et al.  Clustering using objective functions and stochastic search , 2008 .

[45]  Adrian E. Raftery,et al.  Model-Based Clustering, Discriminant Analysis, and Density Estimation , 2002 .

[46]  Robert Tibshirani,et al.  Estimating the number of clusters in a data set via the gap statistic , 2000 .

[47]  H. Müller,et al.  Functional Data Analysis for Sparse Longitudinal Data , 2005 .

[48]  E. Talen School, Community, and Spatial Equity: An Empirical Investigation of Access to Elementary Schools in West Virginia , 2001 .

[49]  Céline Bugli,et al.  Functional ANOVA with random functional effects: an application to event‐related potentials modelling for electroencephalograms analysis , 2006, Statistics in medicine.

[50]  R. Jackson,et al.  Urban Sprawl and Public Health: Designing, Planning, and Building for Healthy Communities , 2004 .

[51]  Sang-Il Lee,et al.  Developing a bivariate spatial association measure: An integration of Pearson's r and Moran's I , 2001, J. Geogr. Syst..

[52]  Ash A. Alizadeh,et al.  'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns , 2000, Genome Biology.

[53]  W. Gurney,et al.  Calibrating remotely sensed chlorophyll‐a data by using penalized regression splines , 2006 .

[54]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.

[55]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[56]  B. Wang,et al.  Curve prediction and clustering with mixtures of Gaussian process functional regression models , 2008, Stat. Comput..

[57]  Adrian E. Raftery,et al.  How Many Clusters? Which Clustering Method? Answers Via Model-Based Cluster Analysis , 1998, Comput. J..

[58]  Emily Talen,et al.  Visualizing Fairness: Equity Maps for Planners , 1998 .

[59]  S. Sain,et al.  Bayesian functional ANOVA modeling using Gaussian process prior distributions , 2010 .

[60]  Y. Pawitan,et al.  Modelling association between two irregularly observed spatiotemporal processes by using maximum covariance analysis , 2005 .

[61]  N. Serban Estimating and clustering curves in the presence of heteroscedastic errors , 2008 .

[62]  A. Koehler,et al.  A Comparison of the Akaike and Schwarz Criteria for Selecting Model Order , 1988 .

[63]  Hervé Cardot,et al.  Conditional Functional Principal Components Analysis , 2007 .

[64]  Chuan Zhou,et al.  Modelling Gene Expression Data over Time: Curve Clustering with Informative Prior Distributions , 2003 .