Errors-in-variables methods in system identification

The paper gives a survey of errors-in-variables methods in system identification. Background and motivation are given, and examples illustrate why the identification problem can be difficult. Under general weak assumptions, the systems are not identifiable, but can be parameterized using one degree-of-freedom. Examples where identifiability is achieved under additional assumptions are also provided. A number of approaches for parameter estimation of errors-in-variables models are presented. The underlying assumptions and principles for each approach are highlighted.

[1]  B. Anderson,et al.  Identifiability in dynamic errors-in-variables models , 1983, The 22nd IEEE Conference on Decision and Control.

[2]  B. Anderson,et al.  Identification of multivariable errors in variable models with dynamics , 1986 .

[3]  S. Beghelli,et al.  A frequential approach for errors-in-variables models , 1997, 1997 European Control Conference (ECC).

[4]  Alexander Kukush,et al.  On errors-in-variables estimation with unknown noise variance ratio , 2006 .

[5]  T. Söderström Discrete-Time Stochastic Systems: Estimation and Control , 1995 .

[6]  Wei Xing Zheng,et al.  ACCURACY ANALYSIS OF BIAS-ELIMINATING LEAST SQUARES ESTIMATES FOR ERRORS-IN-VARIABLES IDENTIFICATION , 2006 .

[7]  Y. Sinai Dynamical Systems II , 1989 .

[8]  Torsten Söderström,et al.  Identification of stochastic linear systems in presence of input noise , 1981, Autom..

[9]  Wei Xing Zheng,et al.  A bias correction method for identification of linear dynamic errors-in-variables models , 2002, IEEE Trans. Autom. Control..

[10]  Wei Xing Zheng,et al.  A Simplified Form of the Bias-Eliminating Least Squares Method for Errors-in-Variables Identification , 2007, IEEE Transactions on Automatic Control.

[11]  Marion Gilson,et al.  On the relation between a bias-eliminated least-squares (BELS) and an IV estimator in closed-loop identification , 2001, Autom..

[12]  W. Zheng Transfer function estimation from noisy input and output data , 1998 .

[13]  Roberto Guidorzi,et al.  Certain models from uncertain data: the algebraic case , 1991 .

[14]  Fredrik Gustafsson,et al.  Time-domain identification of dynamic errors-in-variables systems using periodic excitation signals , 1999 .

[15]  Torsten Söderström,et al.  A SEPARABLE NONLINEAR LEAST-SQUARES APPROACH FOR IDENTIFICATION OF LINEAR SYSTEMS WITH ERRORS IN VARIABLES , 2006 .

[16]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[17]  Kiyoshi Wada,et al.  Identification of Continuous Systems from Noisy Sampled Input-Output Data , 1992 .

[18]  E. Nowak IDENTIFIABILITY IN MULTIVARIATE DYNAMIC LINEAR ERRORS-IN- VARIABLES MODELS , 1992 .

[19]  Umberto Soverini,et al.  The frisch scheme in dynamic system identification , 1990, Autom..

[20]  A. van den Bos Identification of continuous-time systems using multiharmonic test signals , 1991 .

[21]  Wei Xing Zheng,et al.  Comments on "On a least-squares-based algorithm for identification of stochastic linear systems" , 1999, IEEE Trans. Signal Process..

[22]  V. Solo Identifiability of time series models with errors in variables , 1986 .

[23]  Johannes Schumacher,et al.  Three Decades of Mathematical System Theory , 1989 .

[24]  J. Willems,et al.  Application of structured total least squares for system identification and model reduction , 2005, IEEE Transactions on Automatic Control.

[25]  Wei Xing Zheng,et al.  A bias-eliminated least-squares method for continuous-time model identification of closed-loop systems , 2000 .

[26]  Umberto Soverini,et al.  Maximum likelihood identification of noisy input-output models , 2007, Autom..

[27]  Torsten Söderström,et al.  Identification of dynamic errors-in-variables systems with periodic data , 2004 .

[28]  Alexander H. G. Rinnooy Kan,et al.  Preface : Current developments in the interface economics, econometrics, mathematics , 1982 .

[29]  E. Nowak The identification of multivariate linear dynamic errors-in-variables models , 1993 .

[30]  Umberto Soverini,et al.  Identification of dynamic errors-in-variables models , 1996, Autom..

[31]  Torsten Soderstrom,et al.  Why are errors-in-variables problems often tricky? , 2003, 2003 European Control Conference (ECC).

[32]  T. Söderström ON COMPUTING THE CRAMER-RAO BOUND AND COVARIANCE MATRICES FOR PEM ESTIMATES IN LINEAR STATE SPACE MODELS , 2006 .

[33]  Torsten Söderström,et al.  Perspectives on errors-in-variables estimation for dynamic systems , 2002, Signal Process..

[34]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[35]  Umberto Soverini,et al.  Optimal errors-in-variables filtering , 2003, Autom..

[36]  T. Söderström,et al.  Study of a bias-free least squares parameter estimator , 1995 .

[37]  P. Feder Numerical Techniques for Stochastic Systems , 1981 .

[38]  R. E. Kalman,et al.  Identification from Real Data , 1982 .

[39]  R. J. Adcock A Problem in Least Squares , 1878 .

[40]  Cheng Hsiao,et al.  Identification for a Linear Dynamic Simultaneous Error-Shock Model , 1977 .

[41]  J. Schoukens,et al.  Parametric identification of transfer functions in the frequency domain-a survey , 1994, IEEE Trans. Autom. Control..

[42]  S. Huffel,et al.  Total Least Squares and Errors-in-Variables Modeling : Analysis, Algorithms and Applications , 2002 .

[43]  T. Soderstrom,et al.  Accuracy analysis of the Frisch estimates for identifying errors-in-variables systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[44]  K. Fernando,et al.  Identification of linear systems with input and output noise: the Koopmans-Levin method , 1985 .

[45]  Gerd Vandersteen,et al.  Frequency-domain system identification using non-parametric noise models estimated from a small number of data sets , 1997, Autom..

[46]  Roberto Guidorzi,et al.  Identification of the maximal number of linear relations from noisy data , 1995 .

[47]  Olav Reiersol,et al.  Confluence Analysis by Means of Lag Moments and Other Methods of Confluence Analysis , 1941 .

[48]  M. Deistler,et al.  System identification by dynamic factor models , 1996, Proceedings of the 36th IEEE Conference on Decision and Control.

[49]  Torsten Söderström,et al.  Extending the Frisch scheme for errors‐in‐variables identification to correlated output noise , 2008 .

[50]  L. Gleser Estimation in a Multivariate "Errors in Variables" Regression Model: Large Sample Results , 1981 .

[51]  Kiyoshi Wada,et al.  Identification of noisy input-output system using bias-compensated least-squares method , 2005 .

[52]  B. De Moor,et al.  Continuous-time errors-in-variables filtering , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[53]  Wei Xing Zheng,et al.  Convergence properties of bias‐eliminating algorithms for errors‐in‐variables identification , 2005 .

[54]  P. Holmes,et al.  Suppression of bursting , 1997, Autom..

[55]  Torsten Söderström,et al.  Using continuous-time modeling for errors-in-variables identification , 2006 .

[56]  Umberto Soverini,et al.  A New Criterion in EIV Identification and Filtering Applications , 2003 .

[57]  M. Levin Estimation of a system pulse transfer function in the presence of noise , 1964 .

[58]  S. Van Huffel,et al.  Exact and Approximate Modeling of Linear Systems: A Behavioral Approach , 2006 .

[59]  K. Wada,et al.  On bias compensated least squares method for noisy input-output system identification , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[60]  R. Allen,et al.  Statistical Confluence Analysis by means of Complete Regression Systems , 1935 .

[61]  W. Zheng,et al.  Identification of a class of dynamic errors-in-variables models , 1992 .

[62]  Torsten Söderström,et al.  Identification Methods of Dynamic Systems in Presence of Input Noise , 2000 .

[63]  A. Wald The Fitting of Straight Lines if Both Variables are Subject to Error , 1940 .

[64]  Torsten Söderström,et al.  The Cramér-Rao lower bound for noisy input-output systems , 2000, Signal Process..

[65]  H. Unbehauen,et al.  Identification of continuous-time systems , 1991 .

[66]  Jan C. Willems,et al.  From time series to linear system - Part III: Approximate modelling , 1987, Autom..

[67]  M. Aoki,et al.  On a priori error estimates of some identification methods , 1970 .

[68]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[69]  T. Söderström,et al.  Instrumental variable methods for system identification , 1983 .

[70]  Gene H. Golub,et al.  An analysis of the total least squares problem , 1980, Milestones in Matrix Computation.

[71]  Petre Stoica,et al.  Combined instrumental variable and subspace fitting approach to parameter estimation of noisy input-output systems , 1995, IEEE Trans. Signal Process..

[72]  W. Zheng Parametric identification of noisy closed-loop linear systems , 1999 .

[73]  Brian D. O. Anderson,et al.  Identification of scalar errors-in-variables models with dynamics , 1985, Autom..

[74]  Sabine Van Huffel,et al.  Comparison of total least squares and instrumental variable methods for parameter estimation of transfer function models , 1989 .

[75]  W. Zheng On least‐squares identification of stochastic linear systems with noisy input–output data , 1999 .

[76]  Paolo Castaldi,et al.  INDUCTION MOTOR MODEL IDENTIFICATION VIA FREQUENCY-DOMAIN FRISCH SCHEME , 2002 .

[77]  Abraham Wald,et al.  Asymptotically Most Powerful Tests of Statistical Hypotheses , 1941 .

[78]  Antonio Vicino,et al.  Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..

[79]  J. H. Schuppen Stochastic realization problems , 1989 .

[80]  Umberto Soverini,et al.  Identification of linear relations from noisy data: geometrical aspects , 1992 .

[81]  Graham C. Goodwin,et al.  Identifiability of errors in variables dynamic systems , 2008, Autom..

[82]  R. J. Adcock Note on the Method of Least Squares , 1877 .

[83]  V. Rich Personal communication , 1989, Nature.

[84]  O. Reiersøl Identifiability of a Linear Relation between Variables Which Are Subject to Error , 1950 .

[85]  Chun-Bo Feng,et al.  Unbiased parameter estimation of linear systems in the presence of input and output noise , 1989 .

[86]  Roberto Guidorzi,et al.  Invariants and canonical forms for systems structural and parametric identification , 1981, Autom..

[87]  Kaushik Mahata,et al.  Direct identification of continuous-time errors-in-variables models , 2005 .

[88]  M. Deistler Linear dynamic errors-in-variables models , 1986, Journal of Applied Probability.

[89]  Rik Pintelon,et al.  Robust parametric transfer function estimation using complex logarithmic frequency response data , 1994, IEEE Trans. Autom. Control..

[90]  Torsten Söderström,et al.  On instrumental variable and total least squares approaches for identification of noisy systems , 2002 .

[91]  Torsten Söderström,et al.  Identification of dynamic errors-in-variables models: Approaches based on two-dimensional ARMA modeling of the data , 2003, Autom..

[92]  Petre Stoica,et al.  On the uniqueness of prediction error models for systems with noisy input-output data , 1987, Autom..

[93]  F. Eising,et al.  System identification from noisy measurements of inputs and outputs , 1983 .

[94]  T. W. Anderson Estimating Linear Statistical Relationships , 1984 .

[95]  Manfred Deistler,et al.  A Structure Theory for Linear Dynamic Errors-in-Variables Models , 1998 .

[96]  Michel Verhaegen,et al.  Subspace Algorithms for the Identification of Multivariable Dynamic Errors-in-Variables Models , 1997, Autom..

[97]  I. Markovsky,et al.  Consistency of the structured total least squares estimator in a multivariate errors-in-variables model , 2005 .

[98]  S. S. Wilks,et al.  Linear Regression Analysis of Economic Time Series. , 1938 .

[99]  Rik Pintelon,et al.  Frequency domain maximum likelihood estimation of linear dynamic errors-in-variables models , 2007, Autom..

[100]  Brian D. O. Anderson,et al.  Dynamic errors-in-variables systems with three variables , 1987, Autom..

[101]  Kaushik Mahata,et al.  An improved bias-compensation approach for errors-in-variables model identification , 2007, Autom..

[102]  Torsten Söderström,et al.  Computing the Cramer-Rao lower bound for noisy input output systems , 2000 .

[103]  Sabine Van Huffel,et al.  Recent advances in total least squares techniques and errors-in-variables modeling , 1997 .

[104]  Cheng Hsiao,et al.  Efficient Estimation of a Dynamic Error-Shock Model , 1976 .

[105]  B. Anderson,et al.  Linear dynamic errors-in-variables models : Some structure theory , 1989 .

[106]  Jitendra Tugnait Stochastic system identification with noisy input using cumulant statistics , 1992 .

[107]  Mats Ekman,et al.  IDENTIFICATION OF LINEAR SYSTEMS WITH ERRORS IN VARIABLES USING SEPARABLE NONLINEAR LEAST-SQUARES , 2005 .

[108]  Eugen Nowak Global identification of the dynamic shock-error model , 1985 .

[109]  G. Goodwin,et al.  ON THE OPTIMAL ESTIMATION OF ERRORS IN VARIABLES MODELS FOR ROBUST CONTROL , 2005 .

[110]  Jan C. Willems,et al.  From time series to linear system - Part I. Finite dimensional linear time invariant systems , 1986, Autom..

[111]  W. Zheng,et al.  Robust identification of stochastic linear systems with correlated noise , 1991 .