VISHARD10, a novel hyper-redundant haptic interface

This paper presents and discusses the design of a novel hyper-redundant haptic interface with 10 degrees-of-freedom (DOF). The use of additional joints allow:; a significantly larger workspace, while reducing the overall device size. Moreover, an increase in a variety of dexterity measures and a singularity robust redundancy resolution can be achieved. Numerical simulations of standard methods for inverse kinematics resolution, namely pseudo inverse control and the projection of some side criterion on the nullspace of the Jacobian are compared and evaluated.

[1]  Allison M. Okamura,et al.  Getting a Feel for Dynamics: Using Haptic Interface Kits for Teaching Dynamics and Controls , 1997, Dynamic Systems and Control.

[2]  Yoshihiko Nakamura,et al.  Advanced robotics - redundancy and optimization , 1990 .

[3]  Proceedings - 12th International Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems , 2004 .

[4]  Tsuneo Yoshikawa,et al.  Manipulability of Robotic Mechanisms , 1985 .

[5]  Martin Buss,et al.  A control algorithm and preliminary user studies for a bone drilling medical training system , 2003, The 12th IEEE International Workshop on Robot and Human Interactive Communication, 2003. Proceedings. ROMAN 2003..

[6]  Dale A. Lawrence,et al.  Performance trade-offs for hand controller design , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[7]  Vincent Hayward,et al.  Toward a seven axis haptic device , 1995, Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots.

[8]  U. Ku,et al.  Endoscopic surgery training using virtual reality and deformable tissue simulation , 2000 .

[9]  Alin Albu-Schäffer,et al.  DLR's torque-controlled light weight robot III-are we reaching the technological limits now? , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[10]  Martin Buss,et al.  Design, control, and evaluation of a new 6 DOF haptic device , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[11]  J.A. Tenreiro Machado,et al.  A trajectory planning algorithm for redundant manipulators , 1999, Proceedings of the 1999 IEEE International Symposium on Assembly and Task Planning (ISATP'99) (Cat. No.99TH8470).

[12]  William A. Gruver,et al.  Kinematic control of redundant robots and the motion optimizability measure , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[13]  Blake Hannaford,et al.  Excalibur, A Three-Axis Force Display , 1999 .

[14]  Charles Baur,et al.  Overview of the Delta Haptic Device , 2001 .

[15]  Robert Riener,et al.  Control aspects of a robotic haptic interface for kinesthetic knee joint simulation , 2002 .

[16]  J. Dean Brederson,et al.  The Visual Haptic Workbench , 2005, The Visualization Handbook.

[17]  J. Edward Colgate,et al.  Factors affecting the Z-Width of a haptic display , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[18]  Takeo Kanade,et al.  Real-time implementation and evaluation of the computed-torque scheme , 1989, IEEE Trans. Robotics Autom..

[19]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[20]  Grigore C. Burdea,et al.  The “Rutgers Ankle” Orthopedic Rehabilitation Interface , 1999, Dynamic Systems and Control.

[21]  A. Liegeois,et al.  Automatic supervisory control of the configuration and behavior of multi-body mechanisms , 1977 .

[22]  Thomas H. Massie,et al.  The PHANToM Haptic Interface: A Device for Probing Virtual Objects , 1994 .

[23]  Warren P. Seering,et al.  Understanding bandwidth limitations in robot force control , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.