Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise

A Wentzell-Freidlin type large deviation principle is established for the two-dimensional Navier-Stokes equations perturbed by a multiplicative noise in both bounded and unbounded domains. The large deviation principle is equivalent to the Laplace principle in our function space setting. Hence, the weak convergence approach is employed to obtain the Laplace principle for solutions of stochastic Navier-Stokes equations. The existence and uniqueness of a strong solution to (a) stochastic Navier-Stokes equations with a small multiplicative noise, and (b) Navier-Stokes equations with an additional Lipschitz continuous drift term are proved for unbounded domains which may be of independent interest.

[1]  D. Stroock An Introduction to the Theory of Large Deviations , 1984 .

[2]  J. B. Walsh,et al.  An introduction to stochastic partial differential equations , 1986 .

[3]  Hector O. Fattorini,et al.  Infinite Dimensional Optimization and Control Theory: References , 1999 .

[4]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[5]  Mou-Hsiung Chang,et al.  Large deviation for Navier-Stokes equations with small stochastic perturbation , 1996 .

[6]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[7]  W. Fleming A stochastic control approach to some large deviations problems , 1985 .

[8]  S. Sritharan,et al.  THE STOCHASTIC MAGNETO-HYDRODYNAMIC SYSTEM , 1999 .

[9]  Dariusz Gatarek,et al.  Martingale and stationary solutions for stochastic Navier-Stokes equations , 1995 .

[10]  G. Kallianpur,et al.  Stochastic Differential Equations in Infinite Dimensional Spaces , 1995 .

[11]  É. Pardoux,et al.  Équations aux dérivées partielles stochastiques non linéaires monotones : étude de solutions fortes de type Ito , 1975 .

[12]  F. Smithies Linear Operators , 2019, Nature.

[13]  Jose Luis Menaldi,et al.  Stochastic 2-D Navier—Stokes Equation , 2002 .

[14]  P. Chow Stochastic partial differential equations , 1996 .

[15]  Franco Flandoli,et al.  Ergodicity of the 2-D Navier-Stokes equation under random perturbations , 1995 .

[16]  S. Varadhan Large Deviations and Applications , 1984 .

[17]  R. Temam Navier-Stokes Equations and Nonlinear Functional Analysis , 1987 .

[18]  J. Lynch,et al.  A weak convergence approach to the theory of large deviations , 1997 .

[19]  Amir Dembo,et al.  Large Deviations Techniques and Applications , 1998 .

[20]  Luciano de Simon Un'applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine , 1964 .

[21]  Stig Larsson,et al.  Introduction to stochastic partial differential equations , 2008 .

[22]  D. Gatarek,et al.  Stochastic Equations in Hilbert Space with Application to Navier-Stokes Equations in Any Dimension , 1994 .

[23]  Wolf von Wahl,et al.  The equations of Navier-Stokes and abstract parabolic equations , 1985 .

[24]  A. Bensoussan,et al.  Equations aux derivees partielles stochastiques non lineaires , 1972 .

[25]  R. Temam Navier-Stokes Equations , 1977 .

[26]  P. Dupuis,et al.  A VARIATIONAL REPRESENTATION FOR POSITIVE FUNCTIONALS OF INFINITE DIMENSIONAL BROWNIAN MOTION , 2000 .

[27]  P. Chow,et al.  Large deviation problem for some parabolic itǒ equations , 1992 .

[28]  Richard B. Sowers,et al.  Large Deviations for a Reaction-Diffusion Equation with Non-Gaussian Perturbations , 1992 .