Set-theoretic analysis of dynamic systems

In this section, several applications of set-theoretic methods to the performance analysis of dynamic systems will be presented. Although, in principle, the proposed techniques are valid for general systems, their application is computationally viable in the case of (uncertain) linear systems and thus we restrict the attention to this case.

[1]  David Q. Mayne,et al.  Reachability analysis of discrete-time systems with disturbances , 2006, IEEE Transactions on Automatic Control.

[2]  Y. Nesterov,et al.  On the accuracy of the ellipsoid norm approximation of the joint spectral radius , 2005 .

[3]  F. Schweppe,et al.  Control of linear dynamic systems with set constrained disturbances , 1971 .

[4]  F. Blanchini,et al.  On the transient estimate for linear systems with time-varying uncertain parameters , 1996 .

[5]  F. L. Chernous’ko,et al.  Ellipsoidal estimates of a controlled system's attainability domain , 1981 .

[6]  J. Pearson,et al.  l^{1} -optimal feedback controllers for MIMO discrete-time systems , 1987 .

[7]  A. Olas On robustness of systems with structured uncertainties , 1992 .

[8]  Vincent D. Blondel,et al.  Computationally Efficient Approximations of the Joint Spectral Radius , 2005, SIAM J. Matrix Anal. Appl..

[9]  Fred C. Schweppe,et al.  Uncertain dynamic systems , 1973 .

[10]  M. Cwikel,et al.  Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states , 1985, 1985 24th IEEE Conference on Decision and Control.

[11]  Franco Blanchini,et al.  Rational 𝓛1 suboptimal compensators for continuous-time systems , 1994, IEEE Trans. Autom. Control..

[12]  D. Summers,et al.  Optimal technique for estimating the reachable set of a controlled n-dimensional linear system , 1990 .

[13]  A. L. Zelentsovsky Nonquadratic Lyapunov functions for robust stability analysis of linear uncertain systems , 1994, IEEE Trans. Autom. Control..

[14]  Franco Blanchini,et al.  Robust performance with fixed and worst-case signals for uncertain time-varying systems , 1997, Autom..

[15]  F. Schweppe,et al.  A lagrange approach to set-theoretic control synthesis , 1982 .

[16]  Massimiliano Mattei,et al.  A MULTIVARIABLE STABILITY MARGIN IN THE PRESENCE OF TIME-VARYING, BOUNDED RATE GAINS , 1997 .

[17]  Felix L. Chernousko,et al.  Properties of the Optimal Ellipsoids Approximating the Reachable Sets of Uncertain Systems , 2004 .

[18]  Jonathan E. Gayek,et al.  Approximating reachable sets for a class of linear control systems , 1986 .

[19]  Mario Sznaier,et al.  Robust Systems Theory and Applications , 1998 .

[20]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[21]  F. Blanchini,et al.  Constrained stabilization of continuous-time linear systems , 1996 .

[22]  Robert K. Brayton,et al.  Constructive stability and asymptotic stability of dynamical systems , 1980 .

[23]  B. Krogh,et al.  Hyperplane method for reachable state estimation for linear time-invariant systems , 1991 .

[24]  G. Rota,et al.  A note on the joint spectral radius , 1960 .

[25]  Anders Rantzer Uncertain Real Parameters with Bounded Rate of Variation , 1995 .

[26]  Luca Benvenuti,et al.  Polyhedral reachable set with positive controls , 1997, Math. Control. Signals Syst..

[27]  Jean B. Lasserre,et al.  Reachable, controllable sets and stabilizing control of constrained linear systems , 1993, Autom..

[28]  Asen L. Dontchev,et al.  Difference Methods for Differential Inclusions: A Survey , 1992, SIAM Rev..

[29]  G. Chesi Homogeneous Polynomial Forms for Robustness Analysis of Uncertain Systems , 2009 .

[30]  J. Lasserre A complete characterization of reachable sets for constrained linear time varying systems , 1987, 1986 25th IEEE Conference on Decision and Control.

[31]  A. Limpiyamitr,et al.  The Duality Relation between Maximal Output Admissible Set and Reachable Set , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[32]  Graziano Chesi,et al.  Homogeneous Lyapunov functions for systems with structured uncertainties , 2003, Autom..

[33]  D. Mayne,et al.  On the Minimal Robust Positively Invariant Set for Linear Difference Inclusions , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[34]  J. E. Gayek A survey of techniques for approximating reachable and controllable sets , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[35]  Franco Blanchini,et al.  A new class of universal Lyapunov functions for the control of uncertain linear systems , 1999, IEEE Trans. Autom. Control..

[36]  S.V. Rakovic,et al.  The Minimal Robust Positively Invariant Set for Linear Discrete Time Systems: Approximation Methods and Control Applications , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[37]  M. Rasmy,et al.  A simple method for determining the reachable set for linear discrete systems , 1971 .

[38]  David Q. Mayne,et al.  Invariant approximations of the minimal robust positively Invariant set , 2005, IEEE Transactions on Automatic Control.

[39]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[40]  Tryphon T. Georgiou,et al.  On the 𝓛1 norm of uncertain linear systems , 1995, IEEE Trans. Autom. Control..

[41]  Franco Blanchini,et al.  Nonquadratic Lyapunov functions for robust control , 1995, Autom..

[42]  B. Barmish,et al.  The propagation of parametric uncertainty via polytopes , 1979 .

[43]  A. Kurzhanski,et al.  Ellipsoidal Calculus for Estimation and Control , 1996 .

[44]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[45]  W. Ukovich,et al.  Linear programming approach to the control of discrete-time periodic systems with uncertain inputs , 1993 .

[46]  John N. Tsitsiklis,et al.  The Lyapunov exponent and joint spectral radius of pairs of matrices are hard—when not impossible—to compute and to approximate , 1997, Math. Control. Signals Syst..

[47]  John N. Tsitsiklis,et al.  A survey of computational complexity results in systems and control , 2000, Autom..

[48]  M. Corless,et al.  Quadratic boundedness of nominally linear systems , 1998 .

[49]  Kumpati S. Narendra,et al.  Reachable Sets for Linear Dynamical Systems , 1971, Inf. Control..

[50]  M. Cwikel,et al.  Convergence of an algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states , 1986 .