False Discovery Rates for Random Fields

This paper extends False Discovery Rates to random fields, where there are uncountably many hypothesis tests. This provides a method for finding local regions in the field where there is a significant signal while controlling either the proportion of area or the number of clusters in which false rejections occur. We develop confidence envelopes for the proportion of false discoveries as a function of the rejection threshold. This yields algorithms for constructing a confidence superset for the locations of the true nulls. From this we derive rejection thresholds that control the mean and quantiles of the proportion of false discoveries. We apply this method to scan statistics and functional neuroimaging.

[1]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[2]  K. Worsley,et al.  Local Maxima and the Expected Euler Characteristic of Excursion Sets of χ 2, F and t Fields , 1994, Advances in Applied Probability.

[3]  D. Siegmund,et al.  Testing for a Signal with Unknown Location and Scale in a Stationary Gaussian Random Field , 1995 .

[4]  R. Adler An introduction to continuity, extrema, and related topics for general Gaussian processes , 1990 .

[5]  John D. Storey,et al.  Empirical Bayes Analysis of a Microarray Experiment , 2001 .

[6]  H. Finner,et al.  Multiple hypotheses testing and expected number of type I. errors , 2002 .

[7]  Y. Benjamini,et al.  THE CONTROL OF THE FALSE DISCOVERY RATE IN MULTIPLE TESTING UNDER DEPENDENCY , 2001 .

[8]  Vladimir I. Piterbarg,et al.  Asymptotic Methods in the Theory of Gaussian Processes and Fields , 1995 .

[9]  John Suckling,et al.  Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain , 1999, IEEE Transactions on Medical Imaging.

[10]  Gabriele Lohmann,et al.  On Multivariate Spectral Analysis of fMRI Time Series , 2001, NeuroImage.

[11]  K. Worsley,et al.  The geometry of correlation fields with an application to functional connectivity of the brain , 1999 .

[12]  R. Adler,et al.  The Geometry of Random Fields , 1982 .

[13]  M. D’Esposito,et al.  A critique of the use of the Kolmogorov‐Smirnov (KS) statistic for the analysis of BOLD fMRI data , 1998, Magnetic resonance in medicine.

[14]  Christopher R. Genovese,et al.  A Bayesian Time-Course Model for Functional Magnetic Resonance Imaging Data , 2000 .

[15]  Christopher R. Genovese,et al.  A Stochastic Process Approach to False Discovery Rates , 2003 .

[16]  John D. Storey The positive false discovery rate: a Bayesian interpretation and the q-value , 2003 .

[17]  L. Wasserman,et al.  A stochastic process approach to false discovery control , 2004, math/0406519.

[18]  R. Adler On excursion sets, tube formulas and maxima of random fields , 2000 .

[19]  K. Worsley Estimating the number of peaks in a random field using the Hadwiger characteristic of excursion sets, with applications to medical images , 1995 .

[20]  S. Sarkar Some Results on False Discovery Rate in Stepwise multiple testing procedures , 2002 .

[21]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[22]  Xiaotong Shen,et al.  Nonparametric Hypothesis Testing for a Spatial Signal , 2002 .

[23]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[24]  Alan C. Evans,et al.  A General Statistical Analysis for fMRI Data , 2000, NeuroImage.

[25]  Matthew K. Belmonte,et al.  Permutation testing made practical for functional magnetic resonance image analysis , 2001, IEEE Transactions on Medical Imaging.

[26]  John D. Storey A direct approach to false discovery rates , 2002 .

[27]  Christopher R. Genovese,et al.  Operating Characteristics and Extensions of the FDR Procedure , 2001 .

[28]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.