Accurate Tracking of Aggressive Quadrotor Trajectories Using Incremental Nonlinear Dynamic Inversion and Differential Flatness

In this paper, we propose a novel control law for accurate tracking of aggressive (i.e., high-speed and high-acceleration) quadcopter trajectories. The proposed method tracks position and yaw angle with their derivatives of up to fourth order, specifically, the position, velocity, acceleration, jerk, and snap along with the yaw angle, yaw rate and yaw acceleration. Two key aspects of the proposed method are the following. First, the controller exploits the differential flatness of the quadcopter dynamics to generate feedforward inputs for attitude rate and attitude acceleration in order to track the jerk and snap references. The tracking is enabled by direct control of body torque using closed-loop control of all four propeller speeds based on optical encoders attached to the motors. Second, the controller utilizes the incremental nonlinear dynamic inversion (INDI) method for accurate tracking of linear and angular accelerations despite external disturbances. Hence, no prior modeling of aerodynamic effects is required. We evaluate the proposed control law in experiments under motion capture. Using a 1-kg quadcopter, we are able to track a complex 3D trajectory, reaching speeds up to 8.2 m/s and accelerations up to 2g, while keeping the root-mean-square tracking error down to 4.0 cm, in a flight volume that is roughly 6.5 m long, 6.5 m wide, and 1.5 m tall.

[1]  B. Bethke,et al.  Real-time indoor autonomous vehicle test environment , 2008, IEEE Control Systems.

[2]  Claire J. Tomlin,et al.  Quadrotor Helicopter Flight Dynamics and Control: Theory and Experiment , 2007 .

[3]  Gregg Abate,et al.  Flight Controls and Performance Challenges for MAVs in Complex Environments , 2008 .

[4]  T. Madani,et al.  Backstepping Sliding Mode Control Applied to a Miniature Quadrotor Flying Robot , 2006, IECON 2006 - 32nd Annual Conference on IEEE Industrial Electronics.

[5]  Dirk Abel,et al.  Flatness-based control for a quadrotor camera helicopter using model predictive control trajectory generation , 2016, 2016 24th Mediterranean Conference on Control and Automation (MED).

[6]  Philippe Martin,et al.  The true role of accelerometer feedback in quadrotor control , 2010, 2010 IEEE International Conference on Robotics and Automation.

[7]  Timothy W. McLain,et al.  Differential flatness based control of a rotorcraft for aggressive maneuvers , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[8]  J. Sean Humbert,et al.  Experimental Study of Gust Effects on Micro Air Vehicles , 2010 .

[9]  Vijay Kumar,et al.  The GRASP Multiple Micro-UAV Testbed , 2010, IEEE Robotics & Automation Magazine.

[10]  Murat Bronz,et al.  Preliminary Experimental Investigation of Small Scale Propellers at High Incidence Angle , 2018 .

[11]  Raffaello D'Andrea,et al.  Quadrocopter ball juggling , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[12]  Rogelio Lozano,et al.  DYNAMIC MODELLING AND CONFIGURATION STABILIZATION FOR AN X4-FLYER. , 2002 .

[13]  Robert Mahony,et al.  Design of a four-rotor aerial robot , 2002 .

[14]  Tarek Hamel,et al.  Nonlinear feedback control of Quadrotors exploiting First-Order Drag Effects , 2017 .

[15]  Antonio Franchi,et al.  Differential Flatness of Quadrotor Dynamics Subject to Rotor Drag for Accurate Tracking of High-Speed Trajectories , 2017, IEEE Robotics and Automation Letters.

[16]  R. Lozano,et al.  DYNAMIC MODELLING AND CONFIGURATION STABILIZATION FOR AN X 4-FLYER , 2002 .

[17]  S. Shankar Sastry,et al.  Nonlinear control design for slightly non-minimum phase systems: Application to V/STOL aircraft , 1992, Autom..

[18]  Vijay Kumar,et al.  Improving quadrotor trajectory tracking by compensating for aerodynamic effects , 2017, 2017 International Conference on Unmanned Aircraft Systems (ICUAS).

[19]  M. Fliess,et al.  Sur les systèmes non linéaires différentiellement plats , 1992 .

[20]  Raffaello D'Andrea,et al.  Optimization-based iterative learning for precise quadrocopter trajectory tracking , 2012, Autonomous Robots.

[21]  Philippe Martin,et al.  AIRCRAFT CONTROL USING FLATNESS , 1996 .

[22]  Steven L. Waslander,et al.  The Stanford testbed of autonomous rotorcraft for multi agent control (STARMAC) , 2004, The 23rd Digital Avionics Systems Conference (IEEE Cat. No.04CH37576).

[23]  Pedro Simplício,et al.  An acceleration measurements-based approach for helicopter nonlinear flight control using Incremental Nonlinear Dynamic Inversion , 2013 .

[24]  Dale F. Enns,et al.  Nonlinear control law with application to high angle-of-attack flight , 1992 .

[25]  Steven Lake Waslander,et al.  Aerodynamics and control of autonomous quadrotor helicopters in aggressive maneuvering , 2009, 2009 IEEE International Conference on Robotics and Automation.

[26]  M. Fliess,et al.  Flatness and defect of non-linear systems: introductory theory and examples , 1995 .

[27]  Vijay Kumar,et al.  Minimum snap trajectory generation and control for quadrotors , 2011, 2011 IEEE International Conference on Robotics and Automation.

[28]  Yisheng Zhong,et al.  Robust Three-Loop Trajectory Tracking Control for Quadrotors With Multiple Uncertainties , 2016, IEEE Transactions on Industrial Electronics.

[29]  Ümit Özgüner,et al.  Sliding Mode Control of a Quadrotor Helicopter , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[30]  Qiping Chu,et al.  Cascaded incremental nonlinear dynamic inversion for MAV disturbance rejection , 2018 .

[31]  William L. Garrard,et al.  Nonlinear inversion flight control for a supermaneuverable aircraft , 1992 .

[32]  S. Sastry,et al.  Output tracking control design of a helicopter model based on approximate linearization , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[33]  P R Smith,et al.  A SIMPLIFIED APPROACH TO NONLINEAR DYNAMIC INVERSION BASED FLIGHT CONTROL , 1998 .

[34]  R. Murray,et al.  Flat systems, equivalence and trajectory generation , 2003 .

[35]  H. Jin Kim,et al.  Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter , 2009 .

[36]  Jan Albert Mulder,et al.  Robust Flight Control Using Incremental Nonlinear Dynamic Inversion and Angular Acceleration Prediction , 2010 .

[37]  Aaron J. Ostroff,et al.  RECONFIGURABLE FLIGHT CONTROL USING NONLINEAR DYNAMIC INVERSION WITH A SPECIAL ACCELEROMETER IMPLEMENTATION , 2000 .

[38]  Guido C. H. E. de Croon,et al.  Cascaded Incremental Nonlinear Dynamic Inversion Control for MAV Disturbance Rejection , 2017, ArXiv.

[39]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[40]  R. Murray,et al.  Differential Flatness and Absolute Equivalence of Nonlinear Control Systems , 1998 .

[41]  A. Isidori Nonlinear Control Systems , 1985 .

[42]  Sertac Karaman,et al.  Accurate Tracking of Aggressive Quadrotor Trajectories Using Incremental Nonlinear Dynamic Inversion and Differential Flatness , 2021, IEEE Transactions on Control Systems Technology.

[43]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[44]  Vijay Kumar,et al.  Trajectory generation and control for precise aggressive maneuvers with quadrotors , 2012, Int. J. Robotics Res..

[45]  Jonathan P. How,et al.  Indoor Multi-Vehicle Flight Testbed for Fault Detection, Isolation, and Recovery , 2006 .

[46]  Guido C. H. E. de Croon,et al.  Adaptive Incremental Nonlinear Dynamic Inversion for Attitude Control of Micro Air Vehicles , 2016 .

[47]  Philippe Martin Contribution a l'etude des systemes differentiellement plats , 1992 .

[48]  Emilio Frazzoli,et al.  Trajectory tracking control design for autonomous helicopters using a backstepping algorithm , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[49]  O. Sawodny,et al.  Flatness‐Based Tracking Control and Nonlinear Observer for a Micro Aerial Quadcopter , 2010 .

[50]  Dan Bugajski,et al.  Dynamic inversion: an evolving methodology for flight control design , 1994 .

[51]  Ilan Kroo,et al.  The Mesicopter: A Miniature Rotorcraft Concept Phase II Interim Report , 2000 .

[52]  Raffaello D'Andrea,et al.  Autonomous quadrotor flight using a vision system and accommodating frames misalignment , 2009, 2009 IEEE International Symposium on Industrial Embedded Systems.

[53]  Stefan R. Bieniawski,et al.  Micro-Aerial Vehicle Flight in Turbulent Environments: Use of an Indoor Flight Facility for Rapid Design a nd Evaluation , 2008 .