Learning Qualitative Differential Equation models: a survey of algorithms and applications

Over the last two decades, qualitative reasoning (QR) has become an important domain in Artificial Intelligence. QDE (Qualitative Differential Equation) model learning (QML), as a branch of QR, has also received an increasing amount of attention; many systems have been proposed to solve various significant problems in this field. QML has been applied to a wide range of fields, including physics, biology and medical science. In this paper, we first identify the scope of this review by distinguishing QML from other QML systems, and then review all the noteworthy QML systems within this scope. The applications of QML in several application domains are also introduced briefly. Finally, the future directions of QML are explored from different perspectives.

[1]  Stephen Muggleton,et al.  Protein secondary structure prediction using logic-based machine learning , 1992 .

[2]  Ashwin Srinivasan,et al.  Qualitative System Identification from Imperfect Data , 2008, J. Artif. Intell. Res..

[3]  Benjamin Kuipers,et al.  Automatic Abduction of Qualitative Models , 1992, AAAI.

[4]  L.N. de Castro,et al.  An artificial immune network for multimodal function optimization , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[5]  Bernhard Rinner,et al.  Semi-quantitative system identification , 2000, Artif. Intell..

[6]  Stephen Muggleton,et al.  Inverse entailment and progol , 1995, New Generation Computing.

[7]  Mike J. Chantler,et al.  MYCROFT: a framework for qualitative reasoning , 1994 .

[8]  Anil Nigam,et al.  Qualitative Physics Using Dimensional Analysis , 1990, Artif. Intell..

[9]  Sowmya Ramachandran and Raymond J. Mooney and Benjamin J. Kuipers Learning Qualitative Models for Systems with Multiple Operating Regions , 1994 .

[10]  Raúl E. Valdés-Pérez,et al.  Conjecturing Hidden Entities by Means of Simplicity and Conservation Laws: Machine Discovery in Chemistry , 1994, Artif. Intell..

[11]  Mark Eric Wiegand Constructive qualitative simulation of continuous dynamic systems , 1991 .

[12]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[13]  Ljupčo Todorovski,et al.  Using domain knowledge for automated modelling of dynamic systems with equation discovery , 2003 .

[14]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[15]  Herbert A. Simon,et al.  Causality in Device Behavior , 1989, Artif. Intell..

[16]  M. Rebolledo,et al.  Rough intervals - enhancing intervals for qualitative modeling of technical systems , 2006, Artif. Intell..

[17]  Wei Pang,et al.  An Immune-Inspired Approach to Qualitative System Identification of the Detoxification Pathway of Methylglyoxal , 2009, ICARIS.

[18]  Giancarlo Ferrari-Trecate,et al.  Reconstruction of Switching Thresholds in Piecewise-Affine Models of Genetic Regulatory Networks , 2006, HSCC.

[19]  Åke Björck,et al.  Numerical Methods , 2020, Markov Renewal and Piecewise Deterministic Processes.

[20]  George Macleod Coghill Mycroft : a framework for constraint based fuzzy qualitative reasoning , 1996 .

[21]  Ljup Co Todorovski Declarative Bias in Equation Discovery , 1997 .

[22]  Allan M. Bruce JMorven : a framework for parallel non-constructive qualitative reasoning and fuzzy interval simulation , 2007 .

[23]  T. Teichmann,et al.  The Measurement of Power Spectra , 1960 .

[24]  François E. Cellier General system problem solving paradigm for qualitative modeling , 1991 .

[25]  Stephen Muggleton,et al.  Learning from Positive Data , 1996, Inductive Logic Programming Workshop.

[26]  Saso Dzeroski,et al.  Discovering Dynamics , 1993, ICML.

[27]  Selahattin Kuru,et al.  Qualitative System Identification: Deriving Structure from Behavior , 1996, Artif. Intell..

[28]  I. R. Booth,et al.  Methylglyoxal production in bacteria: suicide or survival? , 1998, Archives of Microbiology.

[29]  Ivan Bratko,et al.  Learning Qualitative Models , 2004, AI Mag..

[30]  Jr. Allen B. Tucker,et al.  The Computer Science and Engineering Handbook , 1997 .

[31]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[32]  Alen Varsek,et al.  Qualitative Model Evolution , 1991, IJCAI.

[33]  Qiang Shen,et al.  Fuzzy qualitative simulation , 1993, IEEE Trans. Syst. Man Cybern..

[34]  John R. Koza,et al.  Genetic programming - on the programming of computers by means of natural selection , 1993, Complex adaptive systems.

[35]  Marco Platzner,et al.  Parallel qualitative simulation , 1997, Simul. Pract. Theory.

[36]  Ivan Bratko,et al.  Learning Qualitative Models of Dynamic Systems , 1994, ML.

[37]  Raymond J. Mooney,et al.  Learning Relations by Pathfinding , 1992, AAAI.

[38]  Elizabeth Bradley,et al.  Reasoning about nonlinear system identification , 2001, Artif. Intell..

[39]  Fernando José Von Zuben,et al.  Learning and optimization using the clonal selection principle , 2002, IEEE Trans. Evol. Comput..

[40]  Jeroen Keppens,et al.  Centre for Intelligent Systems and Their Applications on Compositional Modelling on Compositional Modelling on Compositional Modelling* , 2022 .

[41]  H. D. Jong,et al.  Qualitative simulation of genetic regulatory networks using piecewise-linear models , 2004, Bulletin of mathematical biology.

[42]  Ross D. King,et al.  Learning Qualitative Metabolic Models , 2004, ECAI.

[43]  Wei Pang,et al.  Modified clonal selection algorithm for learning qualitative compartmental models of metabolic systems , 2007, GECCO '07.

[44]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[45]  Francesco Bergadano,et al.  Inductive Logic Programming: From Machine Learning to Software Engineering , 1995 .

[46]  Selahattin Kuru,et al.  Qualitative system identification , 1992 .

[47]  Benjamin Kuipers,et al.  Qualitative reasoning: Modeling and simulation with incomplete knowledge , 1994, Autom..

[48]  Terry E. Shoup,et al.  A practical guide to computer methods for engineers , 1979 .

[49]  Reha Kamil Gerceker USING POLYNOMIAL APPROXIMATIONS TO DISCOVER QUALITATIVE MODELS , 2006 .

[50]  Gordon Plotkin,et al.  A Further Note on Inductive Generalization , 2008 .

[51]  Benjamin Kuipers,et al.  Causal Reasoning in Medicine: Analysis of a Protocol , 1984, Cogn. Sci..

[52]  Luca Cardelli,et al.  The Computer Science and Engineering Handbook , 1997 .

[53]  Frank Guerin,et al.  Learning dynamic models of compartment systems by combining symbolic regression with fuzzy vector envisionment , 2007, GECCO '07.

[54]  A. J. Lotka,et al.  Elements of Physical Biology. , 1925, Nature.

[55]  Ashwin Srinivasan,et al.  Discovering the Structure of Partial Differential Equations from Example Behaviour , 2000, ICML.

[56]  Jeroen Keppens,et al.  Proceedings of the 17th International Workshop on Qualitative Reasoning , 2003 .

[57]  Elizabeth Bradley,et al.  Automatic construction of accurate models of physical systems , 1996, Annals of Mathematics and Artificial Intelligence.

[58]  Sago Deroski,et al.  Discovering Dynamics: From Inductive Logic Programming To Machine Discovery , 2002 .

[59]  Raymond J. Mooney,et al.  Automated refinement of first-order horn-clause domain theories , 2005, Machine Learning.

[60]  Ross D. King,et al.  On the use of qualitative reasoning to simulate and identify metabolic pathway , 2005, Bioinform..

[61]  Alex Simpkins,et al.  System Identification: Theory for the User, 2nd Edition (Ljung, L.; 1999) [On the Shelf] , 2012, IEEE Robotics & Automation Magazine.

[62]  Wei Pang,et al.  Advanced experiments for learning qualitative compartment models , 2007 .

[63]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[64]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..

[65]  Stephen Muggleton,et al.  Efficient Induction of Logic Programs , 1990, ALT.

[66]  Enrico W. Coiera Learning Qualitative Models From Example Behaviours , 2004 .

[67]  Saso Dzeroski,et al.  Discovering dynamics: From inductive logic programming to machine discovery , 1993, Journal of Intelligent Information Systems.

[68]  Rui Carlos Camacho de Sousa Ferreira da Silva,et al.  Inducing models of human control skills using machine learning algorithms , 2000 .

[69]  Olivier Bernard,et al.  Experiment selection for the discrimination of semi-quantitative models of dynamical systems , 2006, Artif. Intell..

[70]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[71]  Benjamin Kuipers,et al.  Qualitative Simulation , 1986, Artificial Intelligence.

[72]  R. Lathe Phd by thesis , 1988, Nature.

[73]  George M Coghill Vector Envisionment of Compartmental Systems , 1992 .

[74]  Leandro Nunes de Castro,et al.  The Clonal Selection Algorithm with Engineering Applications 1 , 2000 .

[75]  Janusz Zalewski,et al.  Rough sets: Theoretical aspects of reasoning about data , 1996 .

[76]  Ashwin Srinivasan,et al.  Incremental Identification of Qualitative Models of Biological Systems using Inductive Logic Programming , 2008, J. Mach. Learn. Res..

[77]  Benjamin J. Kaipers,et al.  Qualitative Simulation , 1989, Artif. Intell..

[78]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[79]  M. A. Wolfe A first course in numerical analysis , 1972 .

[80]  W. P. M. H. Heemels,et al.  Comparison of Four Procedures for the Identification of Hybrid Systems , 2005, HSCC.

[81]  Peter Struss,et al.  Qualitative futures , 2006, The Knowledge Engineering Review.

[82]  Riccardo Bellazzi,et al.  Qualitative models and fuzzy systems: an integrated approach for learning from data , 1998, Artif. Intell. Medicine.

[83]  George M. Coghill,et al.  Parallel Fuzzy Qualitative Reasoning , 2005 .

[84]  A. J. Lotka Elements of Physical Biology. , 1925, Nature.