CNN Architectures for Geometric Transformation-Invariant Feature Representation in Computer Vision: A Review

[1]  Geoffrey E. Hinton,et al.  Transforming Auto-Encoders , 2011, ICANN.

[2]  Yongdong Zhang,et al.  Distortion-aware CNNs for Spherical Images , 2018, IJCAI.

[3]  Nitish Srivastava,et al.  Improving neural networks by preventing co-adaptation of feature detectors , 2012, ArXiv.

[4]  Ivan Sosnovik,et al.  Scale-Equivariant Steerable Networks , 2020, ICLR.

[5]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[6]  Søren Hauberg,et al.  Transformations Based on Continuous Piecewise-Affine Velocity Fields , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Alan Yuille,et al.  Combining Compositional Models and Deep Networks For Robust Object Classification under Occlusion , 2020, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[8]  Sander Dieleman,et al.  Rotation-invariant convolutional neural networks for galaxy morphology prediction , 2015, ArXiv.

[9]  Ling Shao,et al.  Building Detail-Sensitive Semantic Segmentation Networks With Polynomial Pooling , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[10]  Michele Volpi,et al.  Learning rotation invariant convolutional filters for texture classification , 2016, 2016 23rd International Conference on Pattern Recognition (ICPR).

[11]  Andrea Vedaldi,et al.  Warped Convolutions: Efficient Invariance to Spatial Transformations , 2016, ICML.

[12]  Gabriel J. Brostow,et al.  CubeNet: Equivariance to 3D Rotation and Translation , 2018, ECCV.

[13]  Nikos Komodakis,et al.  Rotation Equivariant Vector Field Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[14]  Andrew Gordon Wilson,et al.  Generalizing Convolutional Neural Networks for Equivariance to Lie Groups on Arbitrary Continuous Data , 2020, ICML.

[15]  Yu Liu,et al.  Fusion that matters: convolutional fusion networks for visual recognition , 2018, Multimedia Tools and Applications.

[16]  Erik J. Bekkers,et al.  Attentive Group Equivariant Convolutional Networks , 2020, ICML.

[17]  Anders Krogh,et al.  A Simple Weight Decay Can Improve Generalization , 1991, NIPS.

[18]  Jaejin Lee,et al.  CyCNN: A Rotation Invariant CNN using Polar Mapping and Cylindrical Convolution Layers , 2020, ArXiv.

[19]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Xiang Zhang,et al.  OverFeat: Integrated Recognition, Localization and Detection using Convolutional Networks , 2013, ICLR.

[21]  Maurice Weiler,et al.  General E(2)-Equivariant Steerable CNNs , 2019, NeurIPS.

[22]  Andrew Zisserman,et al.  Video Action Transformer Network , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Nathanael Perraudin,et al.  DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications , 2018, Astron. Comput..

[24]  Stefan Roth,et al.  Learning rotation-aware features: From invariant priors to equivariant descriptors , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Yang Li,et al.  Learning Transformation-Invariant Representations for Image Recognition With Drop Transformation Networks , 2018, IEEE Access.

[26]  Lars Kotthoff,et al.  Automated Machine Learning: Methods, Systems, Challenges , 2019, The Springer Series on Challenges in Machine Learning.

[27]  Alexei A. Efros,et al.  Mid-level Visual Element Discovery as Discriminative Mode Seeking , 2013, NIPS.

[28]  Dacheng Tao,et al.  Transform-Invariant Convolutional Neural Networks for Image Classification and Search , 2016, ACM Multimedia.

[29]  Shenghua Gao,et al.  Saliency Detection in 360 ^\circ ∘ Videos , 2018, ECCV.

[30]  Stéphane Mallat,et al.  Invariant Scattering Convolution Networks , 2012, IEEE transactions on pattern analysis and machine intelligence.

[31]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[32]  Radomír Mech,et al.  Deep Multi-patch Aggregation Network for Image Style, Aesthetics, and Quality Estimation , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[33]  Marios Savvides,et al.  Faster than Real-Time Facial Alignment: A 3D Spatial Transformer Network Approach in Unconstrained Poses , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[34]  Kavita Bala,et al.  Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  George Papandreou,et al.  Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation , 2018, ECCV.

[36]  Chen Chen,et al.  Gabor Convolutional Networks , 2017, 2018 IEEE Winter Conference on Applications of Computer Vision (WACV).

[37]  Abhinav Dhall,et al.  Dense and Diverse Capsule Networks: Making the Capsules Learn Better , 2018, ArXiv.

[38]  Tamás Roska,et al.  The use of CNN models in the subcortical visual pathway. (Reseach report of the Dual and Neural Computing Systems Laboratory DNS-16-1992) , 1993 .

[39]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[40]  Shenghua Gao,et al.  Single-Image Crowd Counting via Multi-Column Convolutional Neural Network , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Andre Araujo,et al.  Computing Receptive Fields of Convolutional Neural Networks , 2019, Distill.

[42]  Rafael Monroy,et al.  SalNet360: Saliency Maps for omni-directional images with CNN , 2017, Signal Process. Image Commun..

[43]  Andrew Zisserman,et al.  Automatic Discovery and Optimization of Parts for Image Classification , 2015, ICLR.

[44]  Tareq Abed Mohammed,et al.  Understanding of a convolutional neural network , 2017, 2017 International Conference on Engineering and Technology (ICET).

[45]  Ludovic Denoyer,et al.  Learning Time/Memory-Efficient Deep Architectures with Budgeted Super Networks , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[46]  Daniel E. Worrall,et al.  Deep Scale-spaces: Equivariance Over Scale , 2019, NeurIPS.

[47]  Anupam K. Gupta,et al.  Scale Steerable Filters for Locally Scale-Invariant Convolutional Neural Networks , 2019, ArXiv.

[48]  Stephan J. Garbin,et al.  Harmonic Networks: Deep Translation and Rotation Equivariance , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[49]  Max Welling,et al.  Transformation Properties of Learned Visual Representations , 2014, ICLR.

[50]  Liang Zheng,et al.  Learning Part-based Convolutional Features for Person Re-Identification , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[51]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[52]  Kunihiko Fukushima,et al.  Neocognitron: A hierarchical neural network capable of visual pattern recognition , 1988, Neural Networks.

[53]  Vladlen Koltun,et al.  Multi-Scale Context Aggregation by Dilated Convolutions , 2015, ICLR.

[54]  Koray Kavukcuoglu,et al.  Exploiting Cyclic Symmetry in Convolutional Neural Networks , 2016, ICML.

[55]  Erik J. Bekkers,et al.  Wavelet Networks: Scale Equivariant Learning From Raw Waveforms , 2020, ArXiv.

[56]  Pascal Frossard,et al.  Graph-Based Classification of Omnidirectional Images , 2017, 2017 IEEE International Conference on Computer Vision Workshops (ICCVW).

[57]  Andreas Geiger,et al.  SphereNet: Learning Spherical Representations for Detection and Classification in Omnidirectional Images , 2018, ECCV.

[58]  Pascal Frossard,et al.  Graph-based Isometry Invariant Representation Learning , 2017, ICML.

[59]  Marius Lindauer,et al.  Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework , 2020, ECAI.

[60]  Jürgen Schmidhuber,et al.  Multi-column deep neural networks for image classification , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[61]  David W. Romero,et al.  Group Equivariant Stand-Alone Self-Attention For Vision , 2020, ICLR.

[62]  Shaohui Mei,et al.  Polar Coordinate Convolutional Neural Network: From Rotation-Invariance to Translation-Invariance , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[63]  Dong Xu,et al.  Learning Rotation-Invariant and Fisher Discriminative Convolutional Neural Networks for Object Detection , 2019, IEEE Transactions on Image Processing.

[64]  Devis Tuia,et al.  Scale equivariance in CNNs with vector fields , 2018, ArXiv.

[65]  Joseph L. Mundy,et al.  Object Recognition in the Geometric Era: A Retrospective , 2006, Toward Category-Level Object Recognition.

[66]  Risi Kondor,et al.  On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups , 2018, ICML.

[67]  M. M. Ruiz,et al.  A tutorial on ensembles and deep learning fusion with MNIST as guiding thread: A complex heterogeneous fusion scheme reaching 10 digits error , 2020, ArXiv.

[68]  Kaiming He,et al.  Feature Pyramid Networks for Object Detection , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[69]  Tieniu Tan,et al.  Efficient Neural Architecture Transformation Searchin Channel-Level for Object Detection , 2019, NeurIPS.

[70]  Andrea Vedaldi,et al.  Understanding Image Representations by Measuring Their Equivariance and Equivalence , 2014, International Journal of Computer Vision.

[71]  Anders Eriksson,et al.  IGE-Net: Inverse Graphics Energy Networks for Human Pose Estimation and Single-View Reconstruction , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[72]  Federico Tombari,et al.  3D Point Capsule Networks , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[73]  Raoul de Charette,et al.  Physics-Based Rendering for Improving Robustness to Rain , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[74]  Fuchun Sun,et al.  HyperNet: Towards Accurate Region Proposal Generation and Joint Object Detection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  Maurice Weiler,et al.  A General Theory of Equivariant CNNs on Homogeneous Spaces , 2018, NeurIPS.

[76]  Kristen Grauman,et al.  Kernel Transformer Networks for Compact Spherical Convolution , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[77]  Min Yang,et al.  Investigating Capsule Networks with Dynamic Routing for Text Classification , 2018, EMNLP.

[78]  Guo-Jun Qi,et al.  CapProNet: Deep Feature Learning via Orthogonal Projections onto Capsule Subspaces , 2018, NeurIPS.

[79]  Alan L. Yuille,et al.  DeepVoting: A Robust and Explainable Deep Network for Semantic Part Detection Under Partial Occlusion , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[80]  Zunlei Feng,et al.  Stroke Controllable Fast Style Transfer with Adaptive Receptive Fields , 2018, ECCV.

[81]  Manato Hirabayashi,et al.  Flying object detection system using an omnidirectional camera , 2020, Digit. Investig..

[82]  Zhitao Gong,et al.  Strike (With) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[83]  Maurice Weiler,et al.  Learning Steerable Filters for Rotation Equivariant CNNs , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[84]  Pengfei Xiong,et al.  Deep Fusion Network for Image Completion , 2019, ACM Multimedia.

[85]  Alberto Ferreira de Souza,et al.  Analysing rotation-invariance of a log-polar transformation in convolutional neural networks , 2018, 2018 International Joint Conference on Neural Networks (IJCNN).

[86]  Kristen Grauman,et al.  Making 360° Video Watchable in 2D: Learning Videography for Click Free Viewing , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[87]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[88]  Abhinav Gupta,et al.  A-Fast-RCNN: Hard Positive Generation via Adversary for Object Detection , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[89]  Nikolaos Doulamis,et al.  Deep Learning for Computer Vision: A Brief Review , 2018, Comput. Intell. Neurosci..

[90]  Kunihiko Fukushima,et al.  Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition , 1982 .

[91]  Vijayan K. Asari,et al.  The History Began from AlexNet: A Comprehensive Survey on Deep Learning Approaches , 2018, ArXiv.

[92]  Frank Hutter,et al.  Meta-Learning of Neural Architectures for Few-Shot Learning , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[93]  Yao Li,et al.  Mining Mid-level Visual Patterns with Deep CNN Activations , 2015, International Journal of Computer Vision.

[94]  Ying Wu,et al.  Deeply Learned Compositional Models for Human Pose Estimation , 2018, ECCV.

[95]  Naila Murray,et al.  Generalized Max Pooling , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[96]  Danyang Li,et al.  Ensemble of Deep Neural Networks with Probability-Based Fusion for Facial Expression Recognition , 2017, Cognitive Computation.

[97]  Shengen Yan,et al.  Deep Image: Scaling up Image Recognition , 2015, ArXiv.

[98]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[99]  Li Sun,et al.  Amalgamating Knowledge towards Comprehensive Classification , 2018, AAAI.

[100]  Qingquan Song,et al.  Auto-Keras: An Efficient Neural Architecture Search System , 2018, KDD.

[101]  Kristen Grauman,et al.  Flat2Sphere: Learning Spherical Convolution for Fast Features from 360° Imagery , 2017, NIPS 2017.

[102]  David A. McAllester,et al.  Object Detection with Discriminatively Trained Part Based Models , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[103]  Xiaogang Wang,et al.  DeepID-Net: Deformable deep convolutional neural networks for object detection , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[104]  Bernard Ghanem,et al.  Sim4CV: A Photo-Realistic Simulator for Computer Vision Applications , 2017, International Journal of Computer Vision.

[105]  Jin Zhang,et al.  Multi-column Spatial Transformer Convolution Neural Network for Traffic Sign Recognition , 2018, ISNN.

[106]  Senem Velipasalar,et al.  3D Capsule Networks for Object Classification from 3D Model Data , 2018, 2018 52nd Asilomar Conference on Signals, Systems, and Computers.

[107]  Quoc V. Le,et al.  Neural Architecture Search with Reinforcement Learning , 2016, ICLR.

[108]  Sepp Hochreiter,et al.  Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs) , 2015, ICLR.

[109]  M. Pryczek,et al.  Geometric transformations embedded into convolutional neural networks , 2016 .

[110]  Simon Lucey,et al.  Inverse Compositional Spatial Transformer Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[111]  Amara Dinesh Kumar,et al.  Novel Deep Learning Model for Traffic Sign Detection Using Capsule Networks , 2018, ArXiv.

[112]  Remco Duits,et al.  PDE-based Group Equivariant Convolutional Neural Networks , 2020, ArXiv.

[113]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[114]  Jitendra Malik,et al.  Object Instance Segmentation and Fine-Grained Localization Using Hypercolumns , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[115]  Shuicheng Yan,et al.  Scale-Aware Fast R-CNN for Pedestrian Detection , 2015, IEEE Transactions on Multimedia.

[116]  Gregory Shakhnarovich,et al.  FractalNet: Ultra-Deep Neural Networks without Residuals , 2016, ICLR.

[117]  Mesay Belete Bejiga,et al.  Capsule Networks for Object Detection in UAV Imagery , 2019, Remote. Sens..

[118]  Qiang Qiu,et al.  Oriented Response Networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[119]  Forrest N. Iandola,et al.  DenseNet: Implementing Efficient ConvNet Descriptor Pyramids , 2014, ArXiv.

[120]  Xiaogang Wang,et al.  DeepID-Net: multi-stage and deformable deep convolutional neural networks for object detection , 2014, ArXiv.

[121]  George Papandreou,et al.  Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.

[122]  Frank Hutter,et al.  Simple And Efficient Architecture Search for Convolutional Neural Networks , 2017, ICLR.

[123]  David Zhang,et al.  Part-based convolutional neural network for visual recognition , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[124]  Asifullah Khan,et al.  A survey of the recent architectures of deep convolutional neural networks , 2019, Artificial Intelligence Review.

[125]  Hao Chen,et al.  Fast Neural Architecture Search of Compact Semantic Segmentation Models via Auxiliary Cells , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[126]  Li Fei-Fei,et al.  Auto-DeepLab: Hierarchical Neural Architecture Search for Semantic Image Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[127]  Heiko Neumann,et al.  Incorporating Feedback in Convolutional Neural Networks , 2019, 2019 Conference on Cognitive Computational Neuroscience.

[128]  Tao Mei,et al.  Customizable Architecture Search for Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[129]  Trevor Darrell,et al.  Rich Feature Hierarchies for Accurate Object Detection and Semantic Segmentation , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[130]  Oge Marques,et al.  On the use of variable stride in convolutional neural networks , 2020, Multimedia Tools and Applications.

[131]  Jiahuan Zhou,et al.  Towards a Unified Compositional Model for Visual Pattern Modeling , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[132]  Changxin Gao,et al.  Scale Pyramid Network for Crowd Counting , 2019, 2019 IEEE Winter Conference on Applications of Computer Vision (WACV).

[133]  Yifan He,et al.  Single Image Super-Resolution Based on Multi-Scale Competitive Convolutional Neural Network , 2018, Sensors.

[134]  Mubarak Shah,et al.  VideoCapsuleNet: A Simplified Network for Action Detection , 2018, NeurIPS.

[135]  Farid Melgani,et al.  Capsule Networks for Object Detection in UAV Imagery , 2019, Remote. Sens..

[136]  Pascal Libuschewski,et al.  Group Equivariant Capsule Networks , 2018, NeurIPS.

[137]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[138]  Salman Khan,et al.  A Context-aware Capsule Network for Multi-label Classification , 2018, ECCV Workshops.

[139]  Yoshua Bengio,et al.  Maxout Networks , 2013, ICML.

[140]  Arnold W. M. Smeulders,et al.  Dynamic Steerable Blocks in Deep Residual Networks , 2017, BMVC.

[141]  Joachim M. Buhmann,et al.  TI-POOLING: Transformation-Invariant Pooling for Feature Learning in Convolutional Neural Networks , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[142]  A. Robert Calderbank,et al.  RotDCF: Decomposition of Convolutional Filters for Rotation-Equivariant Deep Networks , 2018, ICLR.

[143]  Gang Yu,et al.  Attention-Based Multi-Context Guiding for Few-Shot Semantic Segmentation , 2019, AAAI.

[144]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[145]  Dan Ciresan,et al.  Multi-Column Deep Neural Networks for offline handwritten Chinese character classification , 2013, 2015 International Joint Conference on Neural Networks (IJCNN).

[146]  Yi Li,et al.  Deformable Convolutional Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[147]  Winston H. Hsu,et al.  Egocentric activity recognition by leveraging multiple mid-level representations , 2016, 2016 IEEE International Conference on Multimedia and Expo (ICME).

[148]  Kostas Daniilidis,et al.  Learning SO(3) Equivariant Representations with Spherical CNNs , 2017, International Journal of Computer Vision.

[149]  T. Poggio,et al.  Hierarchical models of object recognition in cortex , 1999, Nature Neuroscience.

[150]  Rogério Schmidt Feris,et al.  A Unified Multi-scale Deep Convolutional Neural Network for Fast Object Detection , 2016, ECCV.

[151]  Mark Hoogendoorn,et al.  Co-Attentive Equivariant Neural Networks: Focusing Equivariance On Transformations Co-Occurring In Data , 2019, ICLR.

[152]  Wouter Boomsma,et al.  Spherical convolutions and their application in molecular modelling , 2017, NIPS.

[153]  Jiaya Jia,et al.  Fast and Practical Neural Architecture Search , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[154]  Cordelia Schmid,et al.  Transformation Pursuit for Image Classification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[155]  Jian Sun,et al.  Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition , 2015, IEEE Trans. Pattern Anal. Mach. Intell..

[156]  Qing Liu,et al.  Compositional Convolutional Neural Networks: A Deep Architecture With Innate Robustness to Partial Occlusion , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[157]  Sergey Levine,et al.  Model-Agnostic Meta-Learning for Fast Adaptation of Deep Networks , 2017, ICML.

[158]  Jan P. Allebach,et al.  Training Object Detection And Recognition CNN Models Using Data Augmentation , 2017, IMAWM.

[159]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[160]  Konrad P. Körding,et al.  Toward an Integration of Deep Learning and Neuroscience , 2016, bioRxiv.

[161]  Faliang Huang,et al.  Polar Transformation on Image Features for Orientation-Invariant Representations , 2019, IEEE Transactions on Multimedia.

[162]  Heinrich Müller,et al.  SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[163]  Timothée Masquelier,et al.  Deep Networks Can Resemble Human Feed-forward Vision in Invariant Object Recognition , 2015, Scientific Reports.

[164]  Song Han,et al.  ProxylessNAS: Direct Neural Architecture Search on Target Task and Hardware , 2018, ICLR.

[165]  Max Welling,et al.  Gauge Equivariant Convolutional Networks and the Icosahedral CNN 1 , 2019 .

[166]  Aleksander Madry,et al.  A Rotation and a Translation Suffice: Fooling CNNs with Simple Transformations , 2017, ArXiv.

[167]  Eric O. Postma,et al.  Learning scale-variant and scale-invariant features for deep image classification , 2016, Pattern Recognit..

[168]  Iasonas Kokkinos,et al.  Deformable Part Models with CNN Features , 2014, ECCV 2014.

[169]  Fabio Maria Carlucci,et al.  Domain Generalization by Solving Jigsaw Puzzles , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[170]  Sudha Natarajan,et al.  Traffic sign recognition using weighted multi‐convolutional neural network , 2018, IET Intelligent Transport Systems.

[171]  Taghi M. Khoshgoftaar,et al.  A survey on Image Data Augmentation for Deep Learning , 2019, Journal of Big Data.

[172]  Antonio Rodríguez-Sánchez,et al.  Capsule Networks for Attention Under Occlusion , 2019, ICANN.

[173]  Junmo Kim,et al.  Active Convolution: Learning the Shape of Convolution for Image Classification , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[174]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[175]  Yao Sun,et al.  Learning adaptive receptive fields for deep image parsing networks , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[176]  Amit Mishra,et al.  Human eye inspired log-polar pre-processing for neural networks , 2020, 2020 International SAUPEC/RobMech/PRASA Conference.

[177]  Honglak Lee,et al.  Perspective Transformer Nets: Learning Single-View 3D Object Reconstruction without 3D Supervision , 2016, NIPS.

[178]  G. Folland A course in abstract harmonic analysis , 1995 .

[179]  Raquel Urtasun,et al.  Understanding the Effective Receptive Field in Deep Convolutional Neural Networks , 2016, NIPS.

[180]  Ignazio Gallo,et al.  Multimodal Classification Fusion in Real-World Scenarios , 2017, 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR).

[181]  Lin Gao,et al.  A survey on deep geometry learning: From a representation perspective , 2020, Computational Visual Media.

[182]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[183]  Yair Weiss,et al.  Why do deep convolutional networks generalize so poorly to small image transformations? , 2018, J. Mach. Learn. Res..

[184]  Jie Lin,et al.  Region average pooling for context-aware object detection , 2017, 2017 IEEE International Conference on Image Processing (ICIP).

[185]  Zhaoxiang Zhang,et al.  Scale-Aware Trident Networks for Object Detection , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).