Real-Time Model-Based Video Stabilization for Microaerial Vehicles

The emerging branch of micro aerial vehicles (MAVs) has attracted a great interest for their indoor navigation capabilities, but they require a high quality video for tele-operated or autonomous tasks. A common problem of on-board video quality is the effect of undesired movements, so different approaches solve it with both mechanical stabilizers or video stabilizer software. Very few video stabilizer algorithms in the literature can be applied in real-time but they do not discriminate at all between intentional movements of the tele-operator and undesired ones. In this paper, a novel technique is introduced for real-time video stabilization with low computational cost, without generating false movements or decreasing the performance of the stabilized video sequence. Our proposal uses a combination of geometric transformations and outliers rejection to obtain a robust inter-frame motion estimation, and a Kalman filter based on an ANN learned model of the MAV that includes the control action for motion intention estimation.

[1]  Konstantinos G. Derpanis,et al.  Overview of the RANSAC Algorithm , 2005 .

[2]  Cecilio Angulo Bahón,et al.  Control autónomo de cuadricópteros para seguimiento de trayectorias , 2014 .

[3]  Farid Kendoul,et al.  Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems , 2012, J. Field Robotics.

[4]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[6]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Tsung-Han Tsai,et al.  Video stabilization with local rotational motion model , 2012, 2012 IEEE Asia Pacific Conference on Circuits and Systems.

[8]  Sung-Jea Ko,et al.  Robust digital image stabilization using the Kalman filter , 2009, IEEE Transactions on Consumer Electronics.

[9]  Irfan A. Essa,et al.  Auto-directed video stabilization with robust L1 optimal camera paths , 2011, CVPR 2011.

[10]  Dimo T. Dimov,et al.  Real time video stabilization for handheld devices , 2014, CompSysTech.

[11]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[12]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[13]  Michael Gleicher,et al.  Subspace video stabilization , 2011, TOGS.

[14]  Dan Schonfeld,et al.  Robust Video Stabilization Based on Particle Filter Tracking of Projected Camera Motion , 2009, IEEE Transactions on Circuits and Systems for Video Technology.

[15]  Yu-Feng Hsu,et al.  Moving camera video stabilization using homography consistency , 2012, 2012 19th IEEE International Conference on Image Processing.

[16]  Jean Ponce,et al.  Computer Vision: A Modern Approach , 2002 .

[17]  Olivier D. Faugeras,et al.  The geometry of multiple images - the laws that govern the formation of multiple images of a scene and some of their applications , 2001 .

[18]  Harry Shum,et al.  Full-frame video stabilization with motion inpainting , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Bing-Yu Chen,et al.  Video stabilization using robust feature trajectories , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[20]  Cecilio Angulo,et al.  Robust video stabilization based on motion intention for low-cost micro aerial vehicles , 2014, 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14).

[21]  Tobias Bjerregaard,et al.  A survey of research and practices of Network-on-chip , 2006, CSUR.

[22]  S. Govindarajulu,et al.  A Comparison of SIFT, PCA-SIFT and SURF , 2012 .

[23]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[24]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[25]  Olli Silvén,et al.  Video Stabilization Performance Assessment , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[26]  Jie Xu,et al.  Fast feature-based video stabilization without accumulative global motion estimation , 2012, IEEE Transactions on Consumer Electronics.

[27]  Bobby Bodenheimer,et al.  A comparison of motion capture data recorded from a Vicon system and a Microsoft Kinect sensor , 2012, SAP '12.

[28]  Sebastiano Battiato,et al.  SIFT Features Tracking for Video Stabilization , 2007, 14th International Conference on Image Analysis and Processing (ICIAP 2007).

[29]  Sung-Jea Ko,et al.  Video stabilization based on motion segmentation , 2012, 2012 IEEE International Conference on Consumer Electronics (ICCE).

[30]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  David W. Murray,et al.  Guided Sampling and Consensus for Motion Estimation , 2002, ECCV.

[32]  Shang-Hong Lai,et al.  A robust and efficient video stabilization algorithm , 2004, 2004 IEEE International Conference on Multimedia and Expo (ICME) (IEEE Cat. No.04TH8763).

[33]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[34]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[35]  Hai Zhao,et al.  Robust video stabilization based on particle filtering with weighted feature points , 2012, IEEE Transactions on Consumer Electronics.

[36]  Cecilio Angulo Bahón,et al.  Estabilización Robusta de Vídeo basada en Diferencia de Nivel de Gris , 2013 .

[37]  Cecilio Angulo,et al.  Real-time video stabilization without phantom movements for micro aerial vehicles , 2014, EURASIP J. Image Video Process..

[38]  Luo Juan,et al.  A comparison of SIFT, PCA-SIFT and SURF , 2009 .

[39]  Cecilio Angulo,et al.  Estabilización de vídeo en micro vehículos aéreos y su aplicación en la detección de caras , 2014 .

[40]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.