Auditory sequence processing reveals evolutionarily conserved regions of frontal cortex in macaques and humans

[1]  Alice E. Milne,et al.  EEG potentials associated with artificial grammar learning in the primate brain , 2015, Brain and Language.

[2]  J. Rauschecker,et al.  Neurobiological roots of language in primate audition: common computational properties , 2015, Trends in Cognitive Sciences.

[3]  Kenny Smith,et al.  Mixed‐complexity artificial grammar learning in humans and macaque monkeys: evaluating learning strategies , 2015, The European journal of neuroscience.

[4]  Morten H. Christiansen,et al.  Domain generality versus modality specificity: the paradox of statistical learning , 2015, Trends in Cognitive Sciences.

[5]  W. Fitch,et al.  Non-adjacent visual dependency learning in chimpanzees , 2015, Animal Cognition.

[6]  Leofranc Holford-Strevens The Origins of Grammar: Language in the Light of Evolution by James Hurford , 2015 .

[7]  Friedemann Pulvermüller,et al.  Early activation of Broca’s area in grammar processing as revealed by the syntactic mismatch negativity and distributed source analysis , 2014, Cognitive neuroscience.

[8]  M. Petrides,et al.  Cortico-cortical connections of areas 44 and 45B in the macaque monkey , 2014, Brain and Language.

[9]  Karl Magnus Petersson,et al.  Implicit structured sequence learning: an fMRI study of the structural mere-exposure effect , 2014, Front. Psychol..

[10]  Adam G. Thomas,et al.  Comparison of Human Ventral Frontal Cortex Areas for Cognitive Control and Language with Areas in Monkey Frontal Cortex , 2014, Neuron.

[11]  S. Dehaene,et al.  A Hierarchy of Responses to Auditory Regularities in the Macaque Brain , 2014, The Journal of Neuroscience.

[12]  W. Tecumseh Fitch,et al.  Action at a distance: dependency sensitivity in a New World primate , 2013, Biology Letters.

[13]  Yukiko Kikuchi,et al.  Auditory Artificial Grammar Learning in Macaque and Marmoset Monkeys , 2013, The Journal of Neuroscience.

[14]  Alice E. Milne,et al.  Cortical oscillations and spiking activity associated with Artificial Grammar Learning in the monkey auditory cortex , 2013 .

[15]  Peter Hagoort,et al.  MUC (Memory, Unification, Control) and beyond , 2013, Front. Psychol..

[16]  Rogier B Mars,et al.  Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex , 2013, Proceedings of the National Academy of Sciences.

[17]  Nancy Kanwisher,et al.  Language-Selective and Domain-General Regions Lie Side by Side within Broca’s Area , 2012, Current Biology.

[18]  M. Grube,et al.  Auditory sequence analysis and phonological skill , 2012, Proceedings of the Royal Society B: Biological Sciences.

[19]  Peter Hagoort,et al.  Implicit Acquisition of Grammars With Crossed and Nested Non-Adjacent Dependencies: Investigating the Push-Down Stack Model , 2012, Cogn. Sci..

[20]  Peter Hagoort,et al.  Pattern perception and computational complexity: introduction to the special issue , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  Christopher I. Petkov,et al.  On the pursuit of the brain network for proto-syntactic learning in non-human primates: conceptual issues and neurobiological hypotheses , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[22]  Angela D. Friederici,et al.  Artificial grammar learning meets formal language theory: an overview , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[23]  L. Tyler,et al.  Differentiating Hemispheric Contributions to Syntax and Semantics in Patients with Left-Hemisphere Lesions , 2012, The Journal of Neuroscience.

[24]  R. Berwick,et al.  A Bird’s Eye View of Human Language Evolution , 2012, Front. Evol. Neurosci..

[25]  P. Hagoort,et al.  What artificial grammar learning reveals about the neurobiology of syntax , 2012, Brain and Language.

[26]  W. Tecumseh Fitch,et al.  The Evolution of Syntax: An Exaptationist Perspective , 2011, Front. Evol. Neurosci..

[27]  A. Friederici The brain basis of language processing: from structure to function. , 2011, Physiological reviews.

[28]  Peter Hagoort,et al.  Implicit Artificial Syntax Processing: Genes, Preference, and Bounded Recursion , 2011, Biolinguistics.

[29]  Timothy Edward John Behrens,et al.  Diffusion-Weighted Imaging Tractography-Based Parcellation of the Human Parietal Cortex and Comparison with Human and Macaque Resting-State Functional Connectivity , 2011, The Journal of Neuroscience.

[30]  R. Berwick,et al.  Songs to syntax: the linguistics of birdsong , 2011, Trends in Cognitive Sciences.

[31]  Ethan R. Buch,et al.  Distributed and causal influence of frontal operculum in task control , 2011, Proceedings of the National Academy of Sciences.

[32]  Timothy D. Griffiths,et al.  Orthogonal representation of sound dimensions in the primate midbrain , 2011, Nature Neuroscience.

[33]  William D. Marslen-Wilson,et al.  Left inferior frontal cortex and syntax: function, structure and behaviour in patients with left hemisphere damage , 2011, Brain : a journal of neurology.

[34]  S. Crutch,et al.  Central auditory disorders: toward a neuropsychology of auditory objects. , 2010, Current opinion in neurology.

[35]  Karl Magnus Petersson,et al.  Artificial Language Learning in Adults and Children , 2010 .

[36]  C. Scharff,et al.  Twitter evolution: converging mechanisms in birdsong and human speech , 2010, Nature Reviews Neuroscience.

[37]  D. T. Ives,et al.  Bihemispheric foundations for human speech comprehension , 2010, Proceedings of the National Academy of Sciences.

[38]  Morten H. Christiansen,et al.  Impaired artificial grammar learning in agrammatism , 2010, Cognition.

[39]  T. Florian Jaeger,et al.  Redundancy and reduction: Speakers manage syntactic information density , 2010, Cognitive Psychology.

[40]  John Duncan,et al.  The role of the right inferior frontal gyrus: inhibition and attentional control , 2010, NeuroImage.

[41]  Li Sun,et al.  Newcastle University E-prints Citation for Published Item: Further Information on Publisher Website: Publishers Copyright Statement: Use Policy: Characterisation of the Bold Response Time Course at Different Levels of the Auditory Pathway in Non-human Primates , 2022 .

[42]  Karl J. Friston The free-energy principle: a unified brain theory? , 2010, Nature Reviews Neuroscience.

[43]  D. Pandya,et al.  Distinct Parietal and Temporal Pathways to the Homologues of Broca's Area in the Monkey , 2009, PLoS biology.

[44]  Alfred Anwander,et al.  Segregating the core computational faculty of human language from working memory , 2009, Proceedings of the National Academy of Sciences.

[45]  Sterling C. Johnson,et al.  A population-average MRI-based atlas collection of the rhesus macaque , 2009, NeuroImage.

[46]  S. Dehaene,et al.  Neural signature of the conscious processing of auditory regularities , 2009, Proceedings of the National Academy of Sciences.

[47]  Christopher M. Conway,et al.  Neurocognitive Basis of Implicit Learning of Sequential Structure and Its Relation to Language Processing , 2008, Annals of the New York Academy of Sciences.

[48]  Katrin Amunts,et al.  A comparative quantitative analysis of cytoarchitecture and minicolumnar organization in Broca's area in humans and great apes , 2008, The Journal of comparative neurology.

[49]  Angela D. Friederici,et al.  Hierarchical artificial grammar processing engages Broca's area , 2008, NeuroImage.

[50]  M. Hauser,et al.  Grammatical pattern learning by human infants and cotton-top tamarin monkeys , 2008, Cognition.

[51]  Timothy E. J. Behrens,et al.  The evolution of the arcuate fasciculus revealed with comparative DTI , 2008, Nature Neuroscience.

[52]  Gina R. Kuperberg,et al.  Neuroanatomical distinctions within the semantic system during sentence comprehension: Evidence from functional magnetic resonance imaging , 2008, NeuroImage.

[53]  D. Poeppel,et al.  The cortical organization of speech processing , 2007, Nature Reviews Neuroscience.

[54]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[55]  E. Pothos Theories of artificial grammar learning. , 2007, Psychological bulletin.

[56]  Guillén Fernández,et al.  Neural correlates of artificial syntactic structure classification , 2006, NeuroImage.

[57]  N. Logothetis,et al.  Functional Imaging Reveals Numerous Fields in the Monkey Auditory Cortex , 2006, PLoS biology.

[58]  E. Koechlin,et al.  Broca's Area and the Hierarchical Organization of Human Behavior , 2006, Neuron.

[59]  Jeffrey R. Binder,et al.  Attentional Modulation in the Detection of Irrelevant Deviance: A Simultaneous ERP/fMRI Study , 2006, Journal of Cognitive Neuroscience.

[60]  Timothy Q. Gentner,et al.  Recursive syntactic pattern learning by songbirds , 2006, Nature.

[61]  A. Anwander,et al.  The brain differentiates human and non-human grammars: Functional localization and structural connectivity , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Matthias Schlesewsky,et al.  Processing linguistic complexity and grammaticality in the left frontal cortex. , 2005, Cerebral cortex.

[63]  Derek K. Jones,et al.  Perisylvian language networks of the human brain , 2005, Annals of neurology.

[64]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[65]  M. Hauser,et al.  Learning at a distance II. Statistical learning of non-adjacent dependencies in a non-human primate , 2004, Cognitive Psychology.

[66]  A. Friederici Processing local transitions versus long-distance syntactic hierarchies , 2004, Trends in Cognitive Sciences.

[67]  Karl Magnus Petersson,et al.  Artificial syntactic violations activate Broca's region , 2004, Cogn. Sci..

[68]  Yosef Grodzinsky,et al.  Neural correlates of syntactic movement: converging evidence from two fMRI experiments , 2004, NeuroImage.

[69]  W. Fitch,et al.  Computational Constraints on Syntactic Processing in a Nonhuman Primate , 2004, Science.

[70]  A. Friederici,et al.  The brain basis of syntactic processes: functional imaging and lesion studies , 2003, NeuroImage.

[71]  Toben H. Mintz Frequent frames as a cue for grammatical categories in child directed speech , 2003, Cognition.

[72]  Noam Chomsky,et al.  The faculty of language: what is it, who has it, and how did it evolve? , 2002, Science.

[73]  Paul J. Reber,et al.  Neural Correlates of Artificial Grammar Learning , 2002, NeuroImage.

[74]  S. Ferber,et al.  Spatial awareness is a function of the temporal not the posterior parietal lobe , 2001, Nature.

[75]  D Y von Cramon,et al.  Segregating semantic and syntactic aspects of processing in the human brain: an fMRI investigation of different word types. , 2000, Cerebral cortex.

[76]  R. Gómez,et al.  Infant artificial language learning and language acquisition , 2000, Trends in Cognitive Sciences.

[77]  D. Shankweiler,et al.  An Event-related Neuroimaging Study Distinguishing Form and Content in Sentence Processing , 2000, Journal of Cognitive Neuroscience.

[78]  M. Mishkin,et al.  Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex , 1999, Nature Neuroscience.

[79]  Rajesh P. N. Rao,et al.  Predictive coding in the visual cortex: a functional interpretation of some extra-classical receptive-field effects. , 1999 .

[80]  J. Rauschecker Parallel Processing in the Auditory Cortex of Primates , 1998, Audiology and Neurotology.

[81]  F. Aboitiz,et al.  The evolutionary origin of the language areas in the human brain. A neuroanatomical perspective , 1997, Brain Research Reviews.

[82]  R N Aslin,et al.  Statistical Learning by 8-Month-Old Infants , 1996, Science.

[83]  P. Jusczyk,et al.  Infants' sensitivity to phonotactic patterns in the native language. , 1994 .

[84]  A. Reber Implicit learning of artificial grammars , 1967 .

[85]  Barnett,et al.  Supplementary References , 2022 .