Adaptive Neurocontrol of Simulated Rotor Vibrations Using Trailing Edge Flaps

Smart structure activated trailing edge flaps are capable of actively altering the aerodynamic loads on rotor blades. Coupled with a suitable feedback control law, such actuators could potentially be used to counter the vibrations induced by periodic aerodynamic loading on the blades, without the bandwidth constraints and with a potential of lower weight penalties incurred by servo actuation methods. This paper explores new, robust individual blade control (IBC) methodologies for vibration suppression using a piezoactuated trailing edge flap. The controllers employ a single hidden layer neural network, learning in real time, to adaptively cancel the effects of periodic aerodynamic loads on the blades, greatly attenuating the resulting vibrations. Both collocated and noncollocated sensor/actuator pairs are considered. Proofs of the stability and convergence of the proposed neurocontrol strategies are provided, and numerical simulation results for a one-eighth Froude scale blade model are given which demonstrate that the controller can nearly eliminate the blade vibration arising from a wide variety of unknown, periodic disturbance sources.

[1]  Razvan Rusovici,et al.  Solid-State Actuation of Rotor Blade Servo-Flap for Active Vibration Control , 1996 .

[2]  C. Y. Liao,et al.  An Elastodynamic Analysis and Control of Flexible Linkages Using Piezoceramic Sensors and Actuators , 1993 .

[3]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[4]  Victor Giurgiutiu,et al.  Engineering Feasibility of Induced Strain Actuators for Rotor Blade Active Vibration Control , 1994, Smart Structures.

[5]  C. E. Hammond,et al.  Wind Tunnel Results Showing Rotor Vibratory Loads Reduction Using Higher Harmonic Blade Pitch , 1980 .

[6]  Chi-Tsong Chen,et al.  Linear System Theory and Design , 1995 .

[7]  Robert M. Sanner,et al.  Stable Adaptive Control of Robot Manipulators Using Neural Networks , 1995, Neural Computation.

[8]  Norman D. Ham,et al.  Helicopter individual-blade-control research at MIT 1977-1985 , 1986 .

[9]  Haim Baruh,et al.  Active control of flexible structures by use of segmented piezoelectric elements , 1996 .

[10]  David J. Haas,et al.  Prediction of Helicopter Component Loads Using Neural Networks , 1995 .

[11]  Sesi Kottapalli Identification And Control Of Rotorcraft Hub Loads Using Neural Networks , 1997 .

[12]  Inderjit Chopra,et al.  Application of Higher Harmonic Control to Rotors Operating at High Speed and Thrust , 1990 .

[13]  W. Rugh Linear System Theory , 1992 .

[14]  Kwaku O. Prakah-Asante,et al.  The application of multi-channel design methods for vibration control of an active structure , 1994 .

[15]  Ian R. Petersen,et al.  H infinity control of flexible slewing link with active damping , 1993, Smart Structures.

[16]  Inderjit Chopra,et al.  Detection of Helicopter Rotor System Simulated Faults Using Neural Networks , 1996 .

[17]  Edward F. Crawley,et al.  Intelligent structures for aerospace - A technology overview and assessment , 1994 .

[18]  Inderjit Chopra,et al.  Adaptive nonlinear neural network controller for rotorcraft vibration , 1997, Smart Structures.

[19]  I. H. Abbott,et al.  Theory of Wing Sections , 1959 .

[20]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[21]  R. M. Mckillip Periodic control of the individual-blade-control helicopter rotor. Ph.D. Thesis , 1984 .

[22]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[23]  Vasundara V. Varadan,et al.  Smart Structures and Materials 1997: Mathematics and Control in Smart Structures , 1995 .

[24]  Peretz P. Friedmann,et al.  The Practical Implementation of an Actively Controlled Flap to Reduce Vibrations in Helicopter Rotors , 1993 .

[25]  Inderjit Chopra,et al.  Design and testing of a helicopter rotor model with smart trailing edge flaps , 1994 .

[26]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[27]  Victor Giurgiutiu,et al.  Energy-Based Comparison of Solid-State Induced-Strain Actuators , 1996 .

[28]  John L. McCloud,et al.  A Numerical Simulation Study of Open‐Loop, Closed‐Loop and Adaptive Multicyclic Control Systems , 1983 .

[29]  J. G. Leishman,et al.  Unsteady aerodynamics of a flapped airfoil in subsonic flow by indicial concepts , 1995 .

[30]  Inderjit Chopra,et al.  Testing and validation of a Froude-scaled helicopter rotor model with piezo-bimorph-actuated trailing edge flaps , 1997, Smart Structures.

[31]  Arthur Gelb,et al.  Applied Optimal Estimation , 1974 .

[32]  Vittal S. Rao,et al.  H∞ optimal control of smart structures , 1994, Smart Structures.

[33]  Y. C. Chen,et al.  Vibration Control of the Elastodynamic Response of High-Speed Flexible Linkage Mechanisms , 1991 .

[34]  Leonard Meirovitch,et al.  Elements Of Vibration Analysis , 1986 .

[35]  Inderjit Chopra,et al.  Status of Application of Smart Structures Technology to Rotorcraft Systems , 2000 .

[36]  M. Preiswerk,et al.  An analysis of vibration control using piezoceramics in planar flexible-linkage mechanisms , 1994 .

[37]  R. Sanner,et al.  Structurally dynamic wavelet networks for adaptive control of robotic systems , 1998 .