Predictive Metamorphic Control

Model Predictive Control (MPC) has become widely accepted in industry. The reason for its success are manifold including easy implementation, ability to handle constraints, capacity to deal with nonlinearities, etc. However, the method does have drawbacks including tuning difficulties. In this paper, we propose an embellishment to the basic MPC strategy by incorporating a tuning parameter such that one can move continuously from an existing controller to a new MPC strategy. The continuous change of this tuning parameter leads to a continuously varying stabilizing control law. Since the proposed strategy allows one to slowly move from an existing control law to a new and better one, we term the strategy Predictive Metamorphic Control. For the case of an infinite horizon problem without constraints and for the general case with state and input constraints, stability results are established. The merits of the proposed method are illustrated by examples.

[1]  Alberto Bemporad,et al.  Model predictive controller matching: Can MPC enjoy small signal properties of my favorite linear controller? , 2009, 2009 European Control Conference (ECC).

[2]  Basil Kouvaritakis,et al.  Optimizing prediction dynamics for robust MPC , 2005, IEEE Transactions on Automatic Control.

[3]  Edward N. Hartley,et al.  Initial tuning of predictive controllers by reverse engineering , 2009, 2009 European Control Conference (ECC).

[4]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[5]  David Q. Mayne,et al.  Robust model predictive control of constrained linear systems with bounded disturbances , 2005, Autom..

[6]  Tor Arne Johansen,et al.  Linear Moving Horizon Estimation With Pre-Estimating Observer , 2010, IEEE Transactions on Automatic Control.

[7]  Alberto Bemporad,et al.  Model Predictive Control Tuning by Controller Matching , 2010, IEEE Transactions on Automatic Control.

[8]  L. Chisci,et al.  Feasibility in predictive control of constrained linear systems: the output feedback case , 2002 .

[9]  Guang-Ren Duan,et al.  Global stabilization of linear systems with bounded controls using state-dependent saturation functions , 2011, J. Syst. Sci. Complex..

[10]  Shuzhi Sam Ge,et al.  Switched Controllability via Bumpless Transfer Input and Constrained Switching , 2008, IEEE Transactions on Automatic Control.

[11]  V. N. Fomin Discrete Linear Control Systems , 1991 .

[12]  James B. Rawlings,et al.  Constrained linear quadratic regulation , 1998, IEEE Trans. Autom. Control..

[13]  Eduardo F. Camacho,et al.  Model predictive control techniques for hybrid systems , 2010, Annu. Rev. Control..

[14]  Mathias Foo,et al.  On reproducing existing controllers as Model Predictive controllers , 2011, 2011 Australian Control Conference.

[15]  Zoltan K. Nagy,et al.  Evaluation study of an efficient output feedback nonlinear model predictive control for temperature tracking in an industrial batch reactor , 2007 .

[16]  Kazumine Moriyasu A note on Ω-stability , 1991 .

[17]  Jan M. Maciejowski,et al.  REVERSE-ENGINEERING EXISTING CONTROLLERS FOR MPC DESIGN , 2007 .

[18]  M. Morari,et al.  Multivariable Anti-Windup and Bumpless Transfer: A General Theory , 1989, 1989 American Control Conference.

[19]  James B. Rawlings,et al.  Tutorial overview of model predictive control , 2000 .

[20]  Lui Sha,et al.  ORTEGA: An Efficient and Flexible Online Fault Tolerance Architecture for Real-Time Control Systems , 2008, IEEE Transactions on Industrial Informatics.

[21]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[22]  F. Allgöwer,et al.  A note on stability, robustness and performance of output feedback nonlinear model predictive control , 2003 .

[23]  Colin Neil Jones,et al.  MPC of constrained discrete-time linear periodic systems - A framework for asynchronous control: Strong feasibility, stability and optimality via periodic invariance , 2011, Autom..

[24]  Manfred Morari,et al.  A unified framework for the study of anti-windup designs , 1994, Autom..

[25]  Graham C. Goodwin,et al.  Receding horizon control applied to optimal mine planning , 2006, Autom..

[26]  Graham C. Goodwin,et al.  Control System Design , 2000 .

[27]  M.W. Oppenheimer,et al.  Model predictive dynamic control allocation with actuator dynamics , 2004, Proceedings of the 2004 American Control Conference.

[28]  Graham C. Goodwin,et al.  Spatial frequency antiwindup strategy for cross-directional control problems , 2002 .

[29]  David Q. Mayne,et al.  Correction to "Constrained model predictive control: stability and optimality" , 2001, Autom..

[30]  Graham C. Goodwin,et al.  A revisit to inverse optimality of linear systems , 2012, Int. J. Control.

[31]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[32]  Graham C. Goodwin,et al.  Robust output-feedback model predictive control for systems with unstructured uncertainty , 2008, Autom..

[33]  Raymond Hanus,et al.  Anti-windup, bumpless, and conditioned transfer techniques for PID controllers , 1996 .

[34]  E. Mosca,et al.  Nonlinear control of constrained linear systems via predictive reference management , 1997, IEEE Trans. Autom. Control..

[35]  Manfred Morari,et al.  Modeling and Control of Thermal Printing , 2010, IEEE Transactions on Control Systems Technology.

[36]  Marko Bacic,et al.  General interpolation in MPC and its advantages , 2003, IEEE Trans. Autom. Control..

[37]  Zhou Bin,et al.  A Parametric Lyapunov Equation Approach to the Design of Low Gain Feedback , 2006, 2007 Chinese Control Conference.

[38]  Zongli Lin,et al.  Low gain feedback , 1999 .

[39]  James B. Rawlings,et al.  Postface to “ Model Predictive Control : Theory and Design ” , 2012 .

[40]  Marko Bacic,et al.  Model predictive control , 2003 .

[41]  Franco Blanchini,et al.  Set invariance in control , 1999, Autom..

[42]  M. Diehl,et al.  Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations , 2000 .

[43]  Moritz Diehl,et al.  Every Continuous Nonlinear Control System Can be Obtained by Parametric Convex Programming , 2008, IEEE Transactions on Automatic Control.

[44]  Frank Allgöwer,et al.  Nonlinear model predictive control : towards new challenging applications , 2009 .

[45]  Lui Sha,et al.  Dynamic control system upgrade using the Simplex architecture , 1998 .

[46]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[47]  Jie Chen,et al.  Robust Constrained Model Predictive Control Based on Parameter-Dependent Lyapunov Functions , 2008 .

[48]  Michel Kinnaert,et al.  Conditioning technique, a general anti-windup and bumpless transfer method , 1987, Autom..

[49]  Alberto Bemporad,et al.  Anti-windup synthesis via sampled-data piecewise affine optimal control , 2004, Autom..

[50]  Marian P. Kazmierkowski,et al.  “Predictive control in power electronics and drives” , 2008, 2008 IEEE International Symposium on Industrial Electronics.

[51]  D. Mayne,et al.  An introduction to the control of switching electronic systems , 2010, Annu. Rev. Control..

[52]  David Q. Mayne,et al.  Robust output feedback model predictive control of constrained linear systems , 2006, Autom..

[53]  Graham C. Goodwin,et al.  Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.

[54]  Graham C. Goodwin,et al.  A moving horizon approach to Networked Control system design , 2004, IEEE Transactions on Automatic Control.