Interpretable Recurrent Neural Networks in Continuous-time Control Environments

vii Relationship to published Work xv

[1]  Radu Grosu,et al.  Gershgorin Loss Stabilizes the Recurrent Neural Network Compartment of an End-to-end Robot Learning Scheme , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Moritz Hardt Fairness Notions in Decision Making , 2020 .

[3]  Kei Ito,et al.  A Connectome of the Adult Drosophila Central Brain , 2020, bioRxiv.

[4]  M. Larkum,et al.  Dendritic action potentials and computation in human layer 2/3 cortical neurons , 2020, Science.

[5]  Zeb Kurth-Nelson,et al.  A distributional code for value in dopamine-based reinforcement learning , 2020, Nature.

[6]  Demis Hassabis,et al.  Mastering Atari, Go, chess and shogi by planning with a learned model , 2019, Nature.

[7]  Luca Oneto,et al.  Fairness in Machine Learning , 2020, INNSBDDL.

[8]  Manuel Zimmer,et al.  Nested Neuronal Dynamics Orchestrate a Behavioral Hierarchy across Timescales , 2019, Neuron.

[9]  Wojciech M. Czarnecki,et al.  Grandmaster level in StarCraft II using multi-agent reinforcement learning , 2019, Nature.

[10]  U. Alon An introduction to systems biology : design principles of biological circuits , 2019 .

[11]  Yi Wang,et al.  Whole-animal connectomes of both Caenorhabditis elegans sexes , 2019, Nature.

[12]  Yuandong Tian,et al.  One ticket to win them all: generalizing lottery ticket initializations across datasets and optimizers , 2019, NeurIPS.

[13]  Jason Yosinski,et al.  Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask , 2019, NeurIPS.

[14]  Radu Grosu,et al.  Designing Worm-inspired Neural Networks for Interpretable Robotic Control , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[15]  Bin Dong,et al.  PDE-Net 2.0: Learning PDEs from Data with A Numeric-Symbolic Hybrid Deep Network , 2018, J. Comput. Phys..

[16]  Cynthia Rudin,et al.  Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead , 2018, Nature Machine Intelligence.

[17]  Guy Rosman,et al.  Variational End-to-End Navigation and Localization , 2018, 2019 International Conference on Robotics and Automation (ICRA).

[18]  Radu Grosu,et al.  Response Characterization for Auditing Cell Dynamics in Long Short-term Memory Networks , 2018, 2019 International Joint Conference on Neural Networks (IJCNN).

[19]  Michael Carbin,et al.  The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks , 2018, ICLR.

[20]  Bryan Reimer,et al.  MIT Advanced Vehicle Technology Study: Large-Scale Naturalistic Driving Study of Driver Behavior and Interaction With Automation , 2017, IEEE Access.

[21]  David Duvenaud,et al.  Latent Ordinary Differential Equations for Irregularly-Sampled Time Series , 2019, NeurIPS.

[22]  Demis Hassabis,et al.  A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play , 2018, Science.

[23]  Radu Grosu,et al.  Liquid Time-constant Recurrent Neural Networks as Universal Approximators , 2018, ArXiv.

[24]  Aude Billard,et al.  A Physically-Consistent Bayesian Non-Parametric Mixture Model for Dynamical System Learning , 2018, CoRL.

[25]  Mohamed Zaki,et al.  Uncertainty in Neural Networks: Bayesian Ensembling , 2018, ArXiv.

[26]  Guy Rosman,et al.  Variational Autoencoder for End-to-End Control of Autonomous Driving with Novelty Detection and Training De-biasing , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[27]  Albert Gordo,et al.  Learning Global Additive Explanations for Neural Nets Using Model Distillation , 2018 .

[28]  Ramin M. Hasani,et al.  Re-purposing Compact Neuronal Circuit Policies to Govern Reinforcement Learning Tasks , 2018, ArXiv.

[29]  Mariusz Bojarski,et al.  VisualBackProp: Efficient Visualization of CNNs for Autonomous Driving , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[30]  Radu Grosu,et al.  c302: a multiscale framework for modelling the nervous system of Caenorhabditis elegans , 2018, Philosophical Transactions of the Royal Society B: Biological Sciences.

[31]  Richard Gordon,et al.  OpenWorm: overview and recent advances in integrative biological simulation of Caenorhabditis elegans , 2018, Philosophical Transactions of the Royal Society B.

[32]  Andreas Krause,et al.  The Lyapunov Neural Network: Adaptive Stability Certification for Safe Learning of Dynamical Systems , 2018, CoRL.

[33]  Chris Dyer,et al.  Neural Arithmetic Logic Units , 2018, NeurIPS.

[34]  Tommi S. Jaakkola,et al.  Towards Robust Interpretability with Self-Explaining Neural Networks , 2018, NeurIPS.

[35]  Saibal Mukhopadhyay,et al.  HybridNet: Integrating Model-based and Data-driven Learning to Predict Evolution of Dynamical Systems , 2018, CoRL.

[36]  David Duvenaud,et al.  Neural Ordinary Differential Equations , 2018, NeurIPS.

[37]  Christoph H. Lampert,et al.  Learning Equations for Extrapolation and Control , 2018, ICML.

[38]  Samuel J. Gershman,et al.  Human-in-the-Loop Interpretability Prior , 2018, NeurIPS.

[39]  Liam Paull,et al.  Learning Steering Bounds for Parallel Autonomous Systems , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[40]  Benjamin Recht,et al.  Simple random search provides a competitive approach to reinforcement learning , 2018, ArXiv.

[41]  Sashank J. Reddi,et al.  On the Convergence of Adam and Beyond , 2018, ICLR.

[42]  Christopher D. Manning,et al.  Compositional Attention Networks for Machine Reasoning , 2018, ICLR.

[43]  Jascha Sohl-Dickstein,et al.  Sensitivity and Generalization in Neural Networks: an Empirical Study , 2018, ICLR.

[44]  Shih-Chii Liu,et al.  Overcoming the vanishing gradient problem in plain recurrent networks , 2018, ArXiv.

[45]  Bin Dong,et al.  Beyond Finite Layer Neural Networks: Bridging Deep Architectures and Numerical Differential Equations , 2017, ICML.

[46]  Marcin Andrychowicz,et al.  Sim-to-Real Transfer of Robotic Control with Dynamics Randomization , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[47]  Xiaoming Liu,et al.  Do Convolutional Neural Networks Learn Class Hierarchy? , 2017, IEEE Transactions on Visualization and Computer Graphics.

[48]  Xavier Serra,et al.  A Wavenet for Speech Denoising , 2017, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[49]  Tengyu Ma,et al.  Gradient Descent Learns Linear Dynamical Systems , 2016, J. Mach. Learn. Res..

[50]  Alexander M. Rush,et al.  LSTMVis: A Tool for Visual Analysis of Hidden State Dynamics in Recurrent Neural Networks , 2016, IEEE Transactions on Visualization and Computer Graphics.

[51]  Bernhard Schölkopf,et al.  Elements of Causal Inference: Foundations and Learning Algorithms , 2017 .

[52]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[53]  Fabio Massimo Zanzotto Human-in-the-loop Artificial Intelligence , 2017, ArXiv.

[54]  Demis Hassabis,et al.  Mastering the game of Go without human knowledge , 2017, Nature.

[55]  Yee Lian Chew,et al.  Network control principles predict neuron function in the Caenorhabditis elegans connectome , 2017, Nature.

[56]  Ashwin P. Dani,et al.  Learning Partially Contracting Dynamical Systems from Demonstrations , 2017, CoRL.

[57]  Leslie Pack Kaelbling,et al.  Generalization in Deep Learning , 2017, ArXiv.

[58]  Michael C. Mozer,et al.  Discrete Event, Continuous Time RNNs , 2017, ArXiv.

[59]  Sergey Levine,et al.  One-Shot Visual Imitation Learning via Meta-Learning , 2017, CoRL.

[60]  Juan Carlos Niebles,et al.  Visual Forecasting by Imitating Dynamics in Natural Sequences , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[61]  D. Hassabis,et al.  Neuroscience-Inspired Artificial Intelligence , 2017, Neuron.

[62]  Yuval Tassa,et al.  Emergence of Locomotion Behaviours in Rich Environments , 2017, ArXiv.

[63]  Annika L A Nichols,et al.  A global brain state underlies C. elegans sleep behavior , 2017, Science.

[64]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[65]  Javier Alonso-Mora,et al.  A parallel autonomy research platform , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[66]  Caroline Blocher,et al.  Learning stable dynamical systems using contraction theory , 2017, 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).

[67]  Andreas Krause,et al.  Safe Model-based Reinforcement Learning with Stability Guarantees , 2017, NIPS.

[68]  Klaus-Robert Müller,et al.  PatternNet and PatternLRP - Improving the interpretability of neural networks , 2017, ArXiv.

[69]  Radu Grosu,et al.  Compositional neural-network modeling of complex analog circuits , 2017, 2017 International Joint Conference on Neural Networks (IJCNN).

[70]  Marco Pavone,et al.  Robust online motion planning via contraction theory and convex optimization , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[71]  Andrea Vedaldi,et al.  Interpretable Explanations of Black Boxes by Meaningful Perturbation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[72]  Radu Grosu,et al.  SIM-CE: An Advanced Simulink Platform for Studying the Brain of Caenorhabditis elegans , 2017, ArXiv.

[73]  Percy Liang,et al.  Understanding Black-box Predictions via Influence Functions , 2017, ICML.

[74]  Bo Zhang,et al.  Improving Interpretability of Deep Neural Networks with Semantic Information , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[75]  Xi Chen,et al.  Evolution Strategies as a Scalable Alternative to Reinforcement Learning , 2017, ArXiv.

[76]  Naftali Tishby,et al.  Opening the Black Box of Deep Neural Networks via Information , 2017, ArXiv.

[77]  Been Kim,et al.  Towards A Rigorous Science of Interpretable Machine Learning , 2017, 1702.08608.

[78]  Roger D. Quinn,et al.  Design process and tools for dynamic neuromechanical models and robot controllers , 2017, Biological Cybernetics.

[79]  Sotiris Stavridis,et al.  Dynamical System Based Robotic Motion Generation With Obstacle Avoidance , 2017, IEEE Robotics and Automation Letters.

[80]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[81]  Yang Gao,et al.  End-to-End Learning of Driving Models from Large-Scale Video Datasets , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[82]  Filipe Wall Mutz,et al.  A Model-Predictive Motion Planner for the IARA autonomous car , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[83]  David Vázquez,et al.  PixelVAE: A Latent Variable Model for Natural Images , 2016, ICLR.

[84]  Min Wu,et al.  Safety Verification of Deep Neural Networks , 2016, CAV.

[85]  Razvan Pascanu,et al.  Sim-to-Real Robot Learning from Pixels with Progressive Nets , 2016, CoRL.

[86]  Sergey Levine,et al.  Deep reinforcement learning for tensegrity robot locomotion , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[87]  Jorge Nocedal,et al.  On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima , 2016, ICLR.

[88]  Surya Ganguli,et al.  On the Expressive Power of Deep Neural Networks , 2016, ICML.

[89]  Grzegorz Chrupala,et al.  Representation of Linguistic Form and Function in Recurrent Neural Networks , 2016, CL.

[90]  Jürgen Schmidhuber,et al.  LSTM: A Search Space Odyssey , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[91]  Nathan Srebro,et al.  Equality of Opportunity in Supervised Learning , 2016, NIPS.

[92]  Radu Grosu,et al.  Probabilistic reachability analysis of the tap withdrawal circuit in caenorhabditis elegans , 2016, 2016 IEEE International High Level Design Validation and Test Workshop (HLDVT).

[93]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[94]  Hanspeter Pfister,et al.  Automatic Neural Reconstruction from Petavoxel of Electron Microscopy Data , 2016 .

[95]  Radu Grosu,et al.  Efficient modeling of complex Analog integrated circuits using neural networks , 2016, 2016 12th Conference on Ph.D. Research in Microelectronics and Electronics (PRIME).

[96]  Swarat Chaudhuri,et al.  Incremental Task and Motion Planning: A Constraint-Based Approach , 2016, Robotics: Science and Systems.

[97]  Pieter Abbeel,et al.  InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets , 2016, NIPS.

[98]  Aaron Roth,et al.  Fairness in Learning: Classic and Contextual Bandits , 2016, NIPS.

[99]  Danica Kragic,et al.  High-dimensional Winding-Augmented Motion Planning with 2D topological task projections and persistent homology , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[100]  Xin Zhang,et al.  End to End Learning for Self-Driving Cars , 2016, ArXiv.

[101]  Neil T. Heffernan,et al.  AXIS: Generating Explanations at Scale with Learnersourcing and Machine Learning , 2016, L@S.

[102]  Pieter Abbeel,et al.  Benchmarking Deep Reinforcement Learning for Continuous Control , 2016, ICML.

[103]  Jiebo Luo,et al.  Image Captioning with Semantic Attention , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[104]  Alex Graves,et al.  Asynchronous Methods for Deep Reinforcement Learning , 2016, ICML.

[105]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[106]  Benjamin Fish,et al.  A Confidence-Based Approach for Balancing Fairness and Accuracy , 2016, SDM.

[107]  Luis M. Candanedo,et al.  Accurate occupancy detection of an office room from light, temperature, humidity and CO2 measurements using statistical learning models , 2016 .

[108]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[109]  Roland Memisevic,et al.  Regularizing RNNs by Stabilizing Activations , 2015, ICLR.

[110]  Yuval Tassa,et al.  Continuous control with deep reinforcement learning , 2015, ICLR.

[111]  Sergey Levine,et al.  Learning deep neural network policies with continuous memory states , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[112]  Sergey Levine,et al.  End-to-End Training of Deep Visuomotor Policies , 2015, J. Mach. Learn. Res..

[113]  Matthias Durr,et al.  Methods In Neuronal Modeling From Ions To Networks , 2016 .

[114]  Sergey Levine,et al.  Deep Reinforcement Learning for Robotic Manipulation , 2016, ArXiv.

[115]  Roger D. Quinn,et al.  Introducing MantisBot: Hexapod robot controlled by a high-fidelity, real-time neural simulation , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[116]  Adrijan Baric,et al.  Building interchangeable black-box models of integrated circuits for EMC simulations , 2015, 2015 10th International Workshop on the Electromagnetic Compatibility of Integrated Circuits (EMC Compo).

[117]  Quoc V. Le,et al.  Adding Gradient Noise Improves Learning for Very Deep Networks , 2015, ArXiv.

[118]  Theodore H. Lindsay,et al.  Global Brain Dynamics Embed the Motor Command Sequence of Caenorhabditis elegans , 2015, Cell.

[119]  Grzegorz Chrupala,et al.  Lingusitic Analysis of Multi-Modal Recurrent Neural Networks , 2015, VL@EMNLP.

[120]  Christopher D. Manning,et al.  Effective Approaches to Attention-based Neural Machine Translation , 2015, EMNLP.

[121]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[122]  Dit-Yan Yeung,et al.  Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting , 2015, NIPS.

[123]  Phil Blunsom,et al.  Teaching Machines to Read and Comprehend , 2015, NIPS.

[124]  Song Han,et al.  Learning both Weights and Connections for Efficient Neural Network , 2015, NIPS.

[125]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[126]  Nico Blodow,et al.  RoboSherlock: Unstructured information processing for robot perception , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[127]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[128]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[129]  Nitish Srivastava,et al.  Unsupervised Learning of Video Representations using LSTMs , 2015, ICML.

[130]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[131]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[132]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[133]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[134]  Yoshua Bengio,et al.  Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling , 2014, ArXiv.

[135]  Stephen D. Larson,et al.  OpenWorm: an open-science approach to modeling Caenorhabditis elegans , 2014, Front. Comput. Neurosci..

[136]  Klaus Neumann,et al.  Neural learning of vector fields for encoding stable dynamical systems , 2014, Neurocomputing.

[137]  Peng Gao,et al.  Motion planning with Satisfiability Modulo Theories , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[138]  Swarat Chaudhuri,et al.  SMT-based synthesis of integrated task and motion plans from plan outlines , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[139]  Quoc V. Le,et al.  Sequence to Sequence Learning with Neural Networks , 2014, NIPS.

[140]  Navdeep Jaitly,et al.  Towards End-To-End Speech Recognition with Recurrent Neural Networks , 2014, ICML.

[141]  Ming Zhou,et al.  A Recursive Recurrent Neural Network for Statistical Machine Translation , 2014, ACL.

[142]  Aude Billard,et al.  Learning control Lyapunov function to ensure stability of dynamical system-based robot reaching motions , 2014, Robotics Auton. Syst..

[143]  Huaguang Zhang,et al.  A Comprehensive Review of Stability Analysis of Continuous-Time Recurrent Neural Networks , 2014, IEEE Transactions on Neural Networks and Learning Systems.

[144]  Priscilla Koch Wagner,et al.  Gesture Unit Segmentation Using Spatial-Temporal Information and Machine Learning , 2014, FLAIRS.

[145]  Razvan Pascanu,et al.  On the Number of Linear Regions of Deep Neural Networks , 2014, NIPS.

[146]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[147]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[148]  Andrew W. Senior,et al.  Long short-term memory recurrent neural network architectures for large scale acoustic modeling , 2014, INTERSPEECH.

[149]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[150]  T. Sideris Ordinary Differential Equations and Dynamical Systems , 2013 .

[151]  S. Billings Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal Domains , 2013 .

[152]  Joseph Ayers,et al.  A Biomimetic Neuronal Network-Based Controller for Guided Helicopter Flight , 2013, Living Machines.

[153]  Sergey Levine,et al.  Guided Policy Search , 2013, ICML.

[154]  Geoffrey E. Hinton,et al.  Speech recognition with deep recurrent neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[155]  Jun Nakanishi,et al.  Dynamical Movement Primitives: Learning Attractor Models for Motor Behaviors , 2013, Neural Computation.

[156]  Razvan Pascanu,et al.  On the difficulty of training recurrent neural networks , 2012, ICML.

[157]  Pascal Vincent,et al.  Representation Learning: A Review and New Perspectives , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[158]  Davide Anguita,et al.  A Public Domain Dataset for Human Activity Recognition using Smartphones , 2013, ESANN.

[159]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[160]  Razvan Pascanu,et al.  Understanding the exploding gradient problem , 2012, ArXiv.

[161]  Aravinthan D. T. Samuel,et al.  Proprioceptive Coupling within Motor Neurons Drives C. elegans Forward Locomotion , 2012, Neuron.

[162]  Tao Xu,et al.  Dissecting a central flip-flop circuit that integrates contradictory sensory cues in C. elegans feeding regulation , 2012, Nature Communications.

[163]  Geoffrey E. Hinton,et al.  Acoustic Modeling Using Deep Belief Networks , 2012, IEEE Transactions on Audio, Speech, and Language Processing.

[164]  Aude Billard,et al.  Learning Stable Nonlinear Dynamical Systems With Gaussian Mixture Models , 2011, IEEE Transactions on Robotics.

[165]  Ilya Sutskever,et al.  Learning Recurrent Neural Networks with Hessian-Free Optimization , 2011, ICML.

[166]  Geoffrey E. Hinton,et al.  Generating Text with Recurrent Neural Networks , 2011, ICML.

[167]  Lukás Burget,et al.  Extensions of recurrent neural network language model , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[168]  Mario D. Capuozzo,et al.  A compact evolutionary algorithm for integer spiking neural network robot controllers , 2011, 2011 Proceedings of IEEE Southeastcon.

[169]  Yoram Singer,et al.  Adaptive Subgradient Methods for Online Learning and Stochastic Optimization , 2011, J. Mach. Learn. Res..

[170]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[171]  Evan L Ardiel,et al.  An elegant mind: learning and memory in Caenorhabditis elegans. , 2010, Learning & memory.

[172]  Lukás Burget,et al.  Recurrent neural network based language model , 2010, INTERSPEECH.

[173]  Geoffrey Biggs,et al.  A Survey of Robot Programming Systems , 2010 .

[174]  Nikolai K. Moshchuk,et al.  Spot Locator for Autonomous Parking , 2009 .

[175]  Pascal Vincent,et al.  Visualizing Higher-Layer Features of a Deep Network , 2009 .

[176]  S. Tahar,et al.  On the simulation performance of contemporary AMS hardware description languages , 2008, 2008 International Conference on Microelectronics.

[177]  Christian Igel,et al.  Variable Metric Reinforcement Learning Methods Applied to the Noisy Mountain Car Problem , 2008, EWRL.

[178]  Seyed Ghassem Miremadi,et al.  FPGA-Based Fault Injection into Synthesizable Verilog HDL Models , 2008, 2008 Second International Conference on Secure System Integration and Reliability Improvement.

[179]  Mathukumalli Vidyasagar,et al.  A learning theory approach to system identification and stochastic adaptive control , 2008 .

[180]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[181]  Chih-Jen Lin,et al.  A Practical Guide to Support Vector Classication , 2008 .

[182]  Kun Zhang,et al.  Forecasting skewed biased stochastic ozone days: analyses, solutions and beyond , 2008, Knowledge and Information Systems.

[183]  A. Pérez-Escudero,et al.  Optimally wired subnetwork determines neuroanatomy of Caenorhabditis elegans , 2007, Proceedings of the National Academy of Sciences.

[184]  William H. Press,et al.  Numerical Recipes 3rd Edition: The Art of Scientific Computing , 2007 .

[185]  U. Alon Network motifs: theory and experimental approaches , 2007, Nature Reviews Genetics.

[186]  Ellips Masehian,et al.  Classic and Heuristic Approaches in Robot Motion Planning A Chronological Review , 2007 .

[187]  Aude Billard,et al.  On Learning, Representing, and Generalizing a Task in a Humanoid Robot , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[188]  S. Smale,et al.  Learning Theory Estimates via Integral Operators and Their Approximations , 2007 .

[189]  Giuseppina C. Gini,et al.  A BioInspired Neural Controller For a Mobile Robot , 2006, 2006 IEEE International Conference on Robotics and Biomimetics.

[190]  Yu Cao,et al.  New Generation of Predictive Technology Model for Sub-45 nm Early Design Exploration , 2006, IEEE Transactions on Electron Devices.

[191]  Jürgen Schmidhuber,et al.  A System for Robotic Heart Surgery that Learns to Tie Knots Using Recurrent Neural Networks , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[192]  Hans-Georg Zimmermann,et al.  Recurrent Neural Networks Are Universal Approximators , 2006, ICANN.

[193]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[194]  Yee Whye Teh,et al.  A Fast Learning Algorithm for Deep Belief Nets , 2006, Neural Computation.

[195]  T. Hughes,et al.  Signals and systems , 2006, Genome Biology.

[196]  D. Chklovskii,et al.  Wiring optimization can relate neuronal structure and function. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[197]  George A. Bekey,et al.  AUTONOMOUS ROBOTS, From Biological Inspiration to Implementation and Control, by G.A. Bekey, MIT Press, 2005, xv + 577 pp., index, ISBN 0-262-02578-7, 25 pages of references (Hb. £35.95) , 2005, Robotica.

[198]  Francesca Albertini,et al.  Recurrent Neural Networks: Identification and other System Theoretic Properties , 2006 .

[199]  G. Swaminathan Robot Motion Planning , 2006 .

[200]  Eduardo D. Sontag,et al.  UNIQUENESS OF WEIGHTS FOR RECURRENT NETS , 2006 .

[201]  Rajesh P. N. Rao,et al.  Robotic imitation from human motion capture using Gaussian processes , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[202]  Heaton T. Jeff,et al.  Introduction to Neural Networks with Java , 2005 .

[203]  Karl J. Friston,et al.  Bilinear dynamical systems , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[204]  François Pêcheux,et al.  VHDL-AMS and Verilog-AMS as alternative hardware description languages for efficient modeling of multidiscipline systems , 2005, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[205]  Richard S. Sutton,et al.  Reinforcement Learning with Replacing Eligibility Traces , 2005, Machine Learning.

[206]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.

[207]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[208]  Hani Hagras,et al.  Evolving spiking neural network controllers for autonomous robots , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[209]  Eero P. Simoncelli,et al.  Image quality assessment: from error visibility to structural similarity , 2004, IEEE Transactions on Image Processing.

[210]  S. Shen-Orr,et al.  Superfamilies of Evolved and Designed Networks , 2004, Science.

[211]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[212]  Richard S. Sutton,et al.  Reinforcement learning with replacing eligibility traces , 2004, Machine Learning.

[213]  T.,et al.  Training Feedforward Networks with the Marquardt Algorithm , 2004 .

[214]  Yoshua Bengio,et al.  No Unbiased Estimator of the Variance of K-Fold Cross-Validation , 2003, J. Mach. Learn. Res..

[215]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[216]  Marko Bacic,et al.  Model predictive control , 2003 .

[217]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[218]  John C. Knight,et al.  Safety critical systems: challenges and directions , 2002, Proceedings of the 24th International Conference on Software Engineering. ICSE 2002.

[219]  S. Shen-Orr,et al.  Networks Network Motifs : Simple Building Blocks of Complex , 2002 .

[220]  Yoshua Bengio,et al.  Gradient Flow in Recurrent Nets: the Difficulty of Learning Long-Term Dependencies , 2001 .

[221]  Max H. Garzon,et al.  Dynamical approximation by recurrent neural networks , 1999, Neurocomputing.

[222]  Christopher M. Bishop,et al.  A Hierarchical Latent Variable Model for Data Visualization , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[223]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[224]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[225]  Stefan Schaal,et al.  Robot Learning From Demonstration , 1997, ICML.

[226]  Hava T. Siegelmann,et al.  Computational capabilities of recurrent NARX neural networks , 1997, IEEE Trans. Syst. Man Cybern. Part B.

[227]  Peter Tiño,et al.  Learning long-term dependencies in NARX recurrent neural networks , 1996, IEEE Trans. Neural Networks.

[228]  S. R. Wicks,et al.  A Dynamic Network Simulation of the Nematode Tap Withdrawal Circuit: Predictions Concerning Synaptic Function Using Behavioral Criteria , 1996, The Journal of Neuroscience.

[229]  Steve Renals,et al.  THE USE OF RECURRENT NEURAL NETWORKS IN CONTINUOUS SPEECH RECOGNITION , 1996 .

[230]  Wolfgang Maass,et al.  Networks of Spiking Neurons: The Third Generation of Neural Network Models , 1996, Electron. Colloquium Comput. Complex..

[231]  D. P. Atherton,et al.  An analysis package comparing PID anti-windup strategies , 1995 .

[232]  Randall D. Beer,et al.  On the Dynamics of Small Continuous-Time Recurrent Neural Networks , 1995, Adapt. Behav..

[233]  Tomaso A. Poggio,et al.  Regularization Theory and Neural Networks Architectures , 1995, Neural Computation.

[234]  S. R. Wicks,et al.  Integration of mechanosensory stimuli in Caenorhabditis elegans , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[235]  Yoshua Bengio,et al.  Learning long-term dependencies with gradient descent is difficult , 1994, IEEE Trans. Neural Networks.

[236]  S. LaValle,et al.  Motion Planning , 2008, Springer Handbook of Robotics.

[237]  Max H. Garzon,et al.  Observability of Neural Network Behavior , 1993, NIPS.

[238]  Eduardo D. Sontag,et al.  For neural networks, function determines form , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[239]  Yuichi Nakamura,et al.  Approximation of dynamical systems by continuous time recurrent neural networks , 1993, Neural Networks.

[240]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[241]  T. Sejnowski,et al.  Distributed processing of sensory information in the leech. III. A dynamical neural network model of the local bending reflex , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[242]  P. J. Haley,et al.  Extrapolation limitations of multilayer feedforward neural networks , 1992, [Proceedings 1992] IJCNN International Joint Conference on Neural Networks.

[243]  Patrik Larsson,et al.  A Distributed Neural Network Architecture for Hexapod Robot Locomotion , 1992, Neural Computation.

[244]  Paul J. Werbos,et al.  Backpropagation Through Time: What It Does and How to Do It , 1990, Proc. IEEE.

[245]  C. H. Rankin,et al.  Caenorhabditis elegans: A new model system for the study of learning and memory , 1990, Behavioural Brain Research.

[246]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[247]  George Cybenko,et al.  Approximation by superpositions of a sigmoidal function , 1989, Math. Control. Signals Syst..

[248]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[249]  Alberto Elfes,et al.  Using occupancy grids for mobile robot perception and navigation , 1989, Computer.

[250]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[251]  Ken-ichi Funahashi,et al.  On the approximate realization of continuous mappings by neural networks , 1989, Neural Networks.

[252]  Geoffrey E. Hinton,et al.  Phoneme recognition using time-delay neural networks , 1989, IEEE Trans. Acoust. Speech Signal Process..

[253]  Re Davis,et al.  Signaling properties of Ascaris motorneurons: graded active responses, graded synaptic transmission, and tonic transmitter release , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[254]  Yann LeCun,et al.  Optimal Brain Damage , 1989, NIPS.

[255]  Lin-Bao Yang,et al.  Cellular neural networks: theory , 1988 .

[256]  T. Sejnowski,et al.  Predicting the secondary structure of globular proteins using neural network models. , 1988, Journal of molecular biology.

[257]  Dean Pomerleau,et al.  ALVINN, an autonomous land vehicle in a neural network , 2015 .

[258]  P. Deuflhard,et al.  One-step and extrapolation methods for differential-algebraic systems , 1987 .

[259]  Amy L. Lansky,et al.  Reactive Reasoning and Planning , 1987, AAAI.

[260]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[261]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[262]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[263]  David P. Rodgers,et al.  Improvements in multiprocessor system design , 1985, ISCA '85.

[264]  S. Brenner,et al.  The neural circuit for touch sensitivity in Caenorhabditis elegans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[265]  Uzi Vishkin,et al.  An O(n² log n) Parallel MAX-FLOW Algorithm , 1982, J. Algorithms.

[266]  Geoffrey E. Hinton Relaxation and its role in vision , 1977 .

[267]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and Linear Algebra , 1974 .

[268]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[269]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[270]  W. Kutta Beitrag zur Naherungsweisen Integration Totaler Differentialgleichungen , 1901 .

[271]  A. Hurwitz Ueber die Bedingungen, unter welchen eine Gleichung nur Wurzeln mit negativen reellen Theilen besitzt , 1895 .

[272]  C. Runge Ueber die numerische Auflösung von Differentialgleichungen , 1895 .

[273]  H. Poincaré Sur l'équilibre d'une masse fluide animée d'un mouvement de rotation , 1885, Bulletin astronomique.