Distributed Noise-Shaping Quantization: I. Beta Duals of Finite Frames and Near-Optimal Quantization of Random Measurements
暂无分享,去创建一个
[1] Rayan Saab,et al. Sobolev Duals for Random Frames and ΣΔ Quantization of Compressed Sensing Measurements , 2013, Found. Comput. Math..
[2] Vivek K Goyal. Quantized Overcomplete Expansions : Analysis , Synthesis and Algorithms , 1995 .
[3] John J. Benedetto,et al. Sigma-delta quantization and finite frames , 2004, ICASSP.
[4] Graham C. Goodwin,et al. On Optimal Perfect Reconstruction Feedback Quantizers , 2008, IEEE Transactions on Signal Processing.
[5] John J. Benedetto,et al. Sigma-delta (/spl Sigma//spl Delta/) quantization and finite frames , 2006, IEEE Trans. Inf. Theory.
[6] Martin Vetterli,et al. Lower bound on the mean-squared error in oversampled quantization of periodic signals using vector quantization analysis , 1996, IEEE Trans. Inf. Theory.
[7] Özgür Yılmaz,et al. Sobolev Duals in Frame Theory and Sigma-Delta Quantization , 2010 .
[8] C. S. Güntürk. One‐bit sigma‐delta quantization with exponential accuracy , 2003 .
[9] Rayan Saab,et al. Sobolev Duals for Random Frames and Sigma-Delta Quantization of Compressed Sensing Measurements , 2010, ArXiv.
[10] Özgür Yılmaz,et al. On quantization of finite frame expansions: sigma-delta schemes of arbitrary order , 2007, SPIE Optical Engineering + Applications.
[11] M. Rudelson,et al. The smallest singular value of a random rectangular matrix , 2008, 0802.3956.
[12] C. Sinan Güntürk,et al. Mathematics of Analog‐to‐Digital Conversion , 2012 .
[13] K. Dajani,et al. Ergodic Theory of Numbers: Entropy , 2002 .
[14] Özgür Yilmaz,et al. Alternative dual frames for digital-to-analog conversion in sigma–delta quantization , 2010, Adv. Comput. Math..
[15] S. Szarek,et al. Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .
[16] Roman Vershynin,et al. Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.
[17] M. Rudelson,et al. Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.
[18] Ian Galton,et al. Oversampling parallel delta-sigma modulator A/D conversion , 1996 .
[19] Rayan Saab,et al. Quantization and Finite Frames , 2013 .
[20] Bernhard G. Bodmann,et al. Frame paths and error bounds for sigma–delta quantization☆ , 2007 .
[21] Ronald A. DeVore,et al. A/D conversion with imperfect quantizers , 2006, IEEE Transactions on Information Theory.
[22] Bernard Chazelle,et al. The discrepancy method - randomness and complexity , 2000 .
[23] J. Benedetto,et al. Second-order Sigma–Delta (ΣΔ) quantization of finite frame expansions , 2006 .
[24] A. Edelman. Eigenvalues and condition numbers of random matrices , 1988 .
[25] Felix Krahmer,et al. An optimal family of exponentially accurate one‐bit Sigma‐Delta quantization schemes , 2010, ArXiv.
[26] Rayan Saab,et al. Near-Optimal Encoding for Sigma-Delta Quantization of Finite Frame Expansions , 2013, ArXiv.
[27] Rayan Saab,et al. Sigma-Delta quantization of sub-Gaussian frame expansions and its application to compressed sensing , 2013, ArXiv.
[28] W. Parry. On theβ-expansions of real numbers , 1960 .