Spike-timing dependent plasticity in striatal interneurons

Basal ganglia, an ensemble of interconnected subcortical nuclei, are involved in adaptive motor planning and procedural learning. Striatum, the primary input nucleus of basal ganglia, extracts the pertinent cortical and thalamic information from background noise in relation with the environmental stimuli and motivation. The striatum comprises different neuronal populations: the GABAergic striatal output neurons, three classes of GABAergic interneurons and the cholinergic cells. Striatal interneurons exert a powerful control of striatal output neuron excitability and therefore shape the cortico-basal ganglia information processing. Besides output neurons, striatal interneurons also receive directly cortical information and are able to adapt their behavior depending on the level of cortical and striatal activation. In this review, we focus on the corticostriatal long-term synaptic efficacy changes occurring in interneurons, and especially the spike-timing dependent plasticity (STDP), as a Hebbian synaptic learning rule. Combined with the striatal local interactions between interneurons and output neurons, we will consider the functional consequences of the interneuron plasticity on the striatal output. This article is part of a Special Issue entitled 'Synaptic Plasticity & Interneurons'.

[1]  B. Knowlton,et al.  Learning and memory functions of the Basal Ganglia. , 2002, Annual review of neuroscience.

[2]  A. Graybiel Neurotransmitters and neuromodulators in the basal ganglia , 1990, Trends in Neurosciences.

[3]  H. Kita Glutamatergic and gabaergic postsynaptic responses of striatal spiny neurons to intrastriatal and cortical stimulation recorded in slice preparations , 1996, Neuroscience.

[4]  J. Kerr,et al.  Dopamine Receptor Activation Is Required for Corticostriatal Spike-Timing-Dependent Plasticity , 2008, The Journal of Neuroscience.

[5]  Jeffery R Wickens,et al.  Simulation of GABA function in the basal ganglia: computational models of GABAergic mechanisms in basal ganglia function. , 2007, Progress in brain research.

[6]  J. Deniau,et al.  Synaptic Convergence of Motor and Somatosensory Cortical Afferents onto GABAergic Interneurons in the Rat Striatum , 2002, Journal of Neuroscience.

[7]  Jean-Michel Deniau,et al.  Brief Subthreshold Events Can Act as Hebbian Signals for Long-Term Plasticity , 2009, PloS one.

[8]  E. Vaadia,et al.  Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons , 2004, Neuron.

[9]  H. Yin,et al.  The role of the basal ganglia in habit formation , 2006, Nature Reviews Neuroscience.

[10]  D. Lovinger,et al.  Dynamic reorganization of striatal circuits during the acquisition and consolidation of a skill , 2009, Nature Neuroscience.

[11]  R. Costa Plastic Corticostriatal Circuits for Action Learning , 2007, Annals of the New York Academy of Sciences.

[12]  D. Plenz,et al.  Quantitative Estimate of Synaptic Inputs to Striatal Neurons during Up and Down States In Vitro , 2003, The Journal of Neuroscience.

[13]  B. Sakmann,et al.  Coincidence detection and changes of synaptic efficacy in spiny stellate neurons in rat barrel cortex , 1999, Nature Neuroscience.

[14]  Joshua L Plotkin,et al.  Functional and molecular development of striatal fast‐spiking GABAergic interneurons and their cortical inputs , 2005, The European journal of neuroscience.

[15]  P. Calabresi,et al.  Dopamine, Acetylcholine and Nitric Oxide Systems Interact to Induce Corticostriatal Synaptic Plasticity , 2003, Reviews in the neurosciences.

[16]  D. James Surmeier,et al.  Molecular and cellular mechanisms of neostriatal function , 1995 .

[17]  M. Bear,et al.  LTP and LTD An Embarrassment of Riches , 2004, Neuron.

[18]  B. Westerink,et al.  GABAergic Modulation of Striatal Cholinergic Interneurons: An In Vivo Microdialysis Study , 1994, Journal of neurochemistry.

[19]  A. Parent,et al.  Anatomical aspects of information processing in primate basal ganglia , 1993, Trends in Neurosciences.

[20]  D. Plenz,et al.  Up and Down States in Striatal Medium Spiny Neurons Simultaneously Recorded with Spontaneous Activity in Fast-Spiking Interneurons Studied in Cortex–Striatum–Substantia Nigra Organotypic Cultures , 1998, The Journal of Neuroscience.

[21]  Y. Smith,et al.  Cortical inputs to m2‐immunoreactive striatal interneurons in rat and monkey , 2000, Synapse.

[22]  A. Levey,et al.  Subcellular Redistribution of m2 Muscarinic Acetylcholine Receptors in Striatal Interneurons In Vivo after Acute Cholinergic Stimulation , 1998, The Journal of Neuroscience.

[23]  N. Spruston,et al.  Questions about STDP as a General Model of Synaptic Plasticity , 2010, Front. Syn. Neurosci..

[24]  Jean-Michel Deniau,et al.  Striatal Medium-Sized Spiny Neurons: Identification by Nuclear Staining and Study of Neuronal Subpopulations in BAC Transgenic Mice , 2009, PloS one.

[25]  P. Greengard,et al.  Dichotomous Dopaminergic Control of Striatal Synaptic Plasticity , 2008, Science.

[26]  B. D. Bennett,et al.  Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat , 1994, Neuroscience.

[27]  G. Bi,et al.  Timing in synaptic plasticity: from detection to integration , 2005, Trends in Neurosciences.

[28]  O. Bosler,et al.  Ultrastructural correlates of functional relationships between nigral dopaminergic or cortical afferent fibers and neuropeptide Y-containing neurons in the rat striatum , 1989, Neuroscience Letters.

[29]  A M Graybiel,et al.  The basal ganglia and adaptive motor control. , 1994, Science.

[30]  A. Graybiel Habits, rituals, and the evaluative brain. , 2008, Annual review of neuroscience.

[31]  Charles J. Wilson,et al.  GABAergic microcircuits in the neostriatum , 2004, Trends in Neurosciences.

[32]  G. Chiara,et al.  Dopamine - Acetylcholine interactions , 2002 .

[33]  P. Calabresi,et al.  Long‐term Potentiation in the Striatum is Unmasked by Removing the Voltage‐dependent Magnesium Block of NMDA Receptor Channels , 1992, The European journal of neuroscience.

[34]  Alexander B. Wiltschko,et al.  Selective Activation of Striatal Fast-Spiking Interneurons during Choice Execution , 2010, Neuron.

[35]  J. Wickens,et al.  The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues , 2004, Brain Research.

[36]  C. Wilson,et al.  Potassium currents responsible for inward and outward rectification in rat neostriatal spiny projection neurons , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[37]  P. Calabresi,et al.  Short-term and long-term plasticity at corticostriatal synapses: Implications for learning and memory , 2009, Behavioural Brain Research.

[38]  D. Johnston,et al.  Regulation of Synaptic Efficacy by Coincidence of Postsynaptic APs and EPSPs , 1997 .

[39]  Charles J. Wilson,et al.  Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: A study employing intracellular injection of horseradish peroxidase , 1980 .

[40]  J. Glowinski,et al.  Effects of acute dopamine depletion on the electrophysiological properties of striatal neurons , 2007, Neuroscience Research.

[41]  J. Partridge,et al.  Nicotinic Acetylcholine Receptors Interact with Dopamine in Induction of Striatal Long-Term Depression , 2002, The Journal of Neuroscience.

[42]  J. Tepper,et al.  Inhibitory control of neostriatal projection neurons by GABAergic interneurons , 1999, Nature Neuroscience.

[43]  Jean-Michel Deniau,et al.  Cell‐specific spike‐timing‐dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices , 2008, The Journal of physiology.

[44]  A. Grace,et al.  The Nitric Oxide-Guanylyl Cyclase Signaling Pathway Modulates Membrane Activity States and Electrophysiological Properties of Striatal Medium Spiny Neurons Recorded In Vivo , 2004, Journal of Neuroscience.

[45]  S. Hestrin,et al.  Electrical synapses between Gaba-Releasing interneurons , 2001, Nature Reviews Neuroscience.

[46]  W. Schultz Behavioral dopamine signals , 2007, Trends in Neurosciences.

[47]  Y. Dan,et al.  Spike timing-dependent plasticity: from synapse to perception. , 2006, Physiological reviews.

[48]  Charles J. Wilson,et al.  Contribution of a slowly inactivating potassium current to the transition to firing of neostriatal spiny projection neurons. , 1994, Journal of neurophysiology.

[49]  S. J. Martin,et al.  Synaptic plasticity and memory: an evaluation of the hypothesis. , 2000, Annual review of neuroscience.

[50]  J. Tepper,et al.  Dual Cholinergic Control of Fast-Spiking Interneurons in the Neostriatum , 2002, The Journal of Neuroscience.

[51]  P. Calabresi,et al.  A Critical Role of the Nitric Oxide/cGMP Pathway in Corticostriatal Long-Term Depression , 1999, The Journal of Neuroscience.

[52]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[53]  H. Groenewegen,et al.  The anatomical relationship of the prefrontal cortex with the striatopallidal system, the thalamus and the amygdala: evidence for a parallel organization. , 1990, Progress in brain research.

[54]  A. Graybiel,et al.  Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. , 1994, Science.

[55]  T. Teyler Long-term potentiation and memory. , 1987, International journal of neurology.

[56]  A. Sadikot,et al.  Neurogenesis and stereological morphometry of calretinin‐immunoreactive GABAergic interneurons of the neostriatum , 2004, The Journal of comparative neurology.

[57]  Laurent Venance,et al.  Spike-Timing Dependent Plasticity in the Striatum , 2010, Front. Syn. Neurosci..

[58]  Anatol C. Kreitzer,et al.  Physiology and pharmacology of striatal neurons. , 2009, Annual review of neuroscience.

[59]  A. Parent,et al.  The organization of the striatal output system: a single-cell juxtacellular labeling study in the rat , 2000, Neuroscience Research.

[60]  D. Surmeier,et al.  D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons , 2007, Trends in Neurosciences.

[61]  P. Redgrave,et al.  Cortico-Striatal Spike-Timing Dependent Plasticity After Activation of Subcortical Pathways , 2010, Front. Syn. Neurosci..

[62]  J. Deniau,et al.  Anatomical segregation of information processing in the rat substantia nigra pars reticulata. , 1997, Advances in neurology.

[63]  L. Trussell,et al.  Cell-specific, spike timing–dependent plasticities in the dorsal cochlear nucleus , 2004, Nature Neuroscience.

[64]  Anatol C. Kreitzer,et al.  Distinct Roles of GABAergic Interneurons in the Regulation of Striatal Output Pathways , 2010, The Journal of Neuroscience.

[65]  Antonio Pisani,et al.  Acetylcholine-mediated modulation of striatal function , 2000, Trends in Neurosciences.

[66]  O. Bosler,et al.  Striatal NPY‐Containing Neurons Receive GABAergic Afferents and may also Contain GABA: An Electron Microscopic Study in the Rat , 1990, The European journal of neuroscience.

[67]  Y. Kawaguchi,et al.  Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[68]  H. Kita,et al.  Parvalbumin-immunoreactive neurons in the rat neostriatum: a light and electron microscopic study , 1990, Brain Research.

[69]  Charles J. Wilson,et al.  Comparison of IPSCs Evoked by Spiny and Fast-Spiking Neurons in the Neostriatum , 2004, The Journal of Neuroscience.

[70]  Paul Apicella,et al.  Leading tonically active neurons of the striatum from reward detection to context recognition , 2007, Trends in Neurosciences.

[71]  P. Calabresi,et al.  Intrinsic membrane properties of neostriatal neurons can account for their low level of spontaneous activity , 1987, Neuroscience.

[72]  Thomas Wichmann,et al.  Circuits and circuit disorders of the basal ganglia. , 2007, Archives of neurology.

[73]  R. Malenka,et al.  Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. , 2000, Annual review of neuroscience.

[74]  P. Groves,et al.  Fine structure and synaptic connections of the common spiny neuron of the rat neostriatum: a study employing intracellular inject of horseradish peroxidase. , 1980, The Journal of comparative neurology.

[75]  P. Calabresi,et al.  Stimulation of Nitric Oxide–cGMP Pathway Excites Striatal Cholinergic Interneurons via Protein Kinase G Activation , 2001, The Journal of Neuroscience.

[76]  Jean-Michel Deniau,et al.  Corticostriatal plasticity: life after the depression , 2004, Trends in Neurosciences.

[77]  Anatol C. Kreitzer,et al.  Striatal Plasticity and Basal Ganglia Circuit Function , 2008, Neuron.

[78]  Yihui Cui,et al.  Distinct coincidence detectors govern the corticostriatal spike timing‐dependent plasticity , 2010, The Journal of physiology.

[79]  A. D. Smith,et al.  The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones , 1990, Trends in Neurosciences.

[80]  J. Wickens Synaptic plasticity in the basal ganglia , 2009, Behavioural Brain Research.

[81]  Y. Kubota,et al.  Dependence of GABAergic Synaptic Areas on the Interneuron Type and Target Size , 2000, The Journal of Neuroscience.

[82]  Y. Dan,et al.  Spike timing-dependent plasticity: a Hebbian learning rule. , 2008, Annual review of neuroscience.

[83]  P. J. Sjöström,et al.  Spike timing, calcium signals and synaptic plasticity , 2002, Current Opinion in Neurobiology.

[84]  Naoyuki Matsumoto,et al.  Tonically active neurons in the striatum encode motivational contexts of action , 2003, Brain and Development.

[85]  Henrike Planert,et al.  Dynamics of Synaptic Transmission between Fast-Spiking Interneurons and Striatal Projection Neurons of the Direct and Indirect Pathways , 2010, The Journal of Neuroscience.

[86]  J. Deniau,et al.  Asymmetric spike-timing dependent plasticity of striatal nitric oxide-synthase interneurons , 2009, Neuroscience.

[87]  J. Lipski,et al.  Effects of muscarinic acetylcholine receptor activation on membrane currents and intracellular messengers in medium spiny neurones of the rat striatum , 2004, The European journal of neuroscience.

[88]  P. Calabresi,et al.  Coordinate high-frequency pattern of stimulation and calcium levels control the induction of LTP in striatal cholinergic interneurons. , 2004, Learning & memory.

[89]  John N. J. Reynolds,et al.  Dopamine-dependent plasticity of corticostriatal synapses , 2002, Neural Networks.

[90]  M. Migliore,et al.  Control of GABA Release at Mossy Fiber-CA3 Connections in the Developing Hippocampus , 2010, Front. Syn. Neurosci..

[91]  P. Calabresi,et al.  Long-term synaptic depression in the striatum: physiological and pharmacological characterization , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  Stéphane Charpier,et al.  Feedforward Inhibition of Projection Neurons by Fast-Spiking GABA Interneurons in the Rat Striatum In Vivo , 2005, The Journal of Neuroscience.

[93]  A. Sadikot,et al.  GABA promotes survival but not proliferation of parvalbumin-immunoreactive interneurons in rodent neostriatum: an in vivo study with stereology , 2001, Neuroscience.

[94]  P. Calabresi,et al.  The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia , 1996, Trends in Neurosciences.

[95]  J. Tepper,et al.  Functional diversity and specificity of neostriatal interneurons , 2004, Current Opinion in Neurobiology.

[96]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[97]  G. Graveland,et al.  The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum , 1985, Brain Research.

[98]  A. Graybiel The basal ganglia: learning new tricks and loving it , 2005, Current Opinion in Neurobiology.

[99]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization , 1992, Trends in Neurosciences.

[100]  Gayle M. Wittenberg,et al.  Spike Timing Dependent Plasticity: A Consequence of More Fundamental Learning Rules , 2010, Front. Comput. Neurosci..

[101]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. , 1992, Annual review of neuroscience.

[102]  K. Blackwell,et al.  Gap Junctions between Striatal Fast-Spiking Interneurons Regulate Spiking Activity and Synchronization as a Function of Cortical Activity , 2009, The Journal of Neuroscience.

[103]  D. Plenz,et al.  Using potassium currents to solve signal-to-noise problems in inhibitory feedforward networks of the striatum. , 2006, Journal of neurophysiology.

[104]  D. James Surmeier,et al.  Thalamic Gating of Corticostriatal Signaling by Cholinergic Interneurons , 2010, Neuron.

[105]  Garrett E. Alexander Basal ganglia , 1998 .

[106]  Charles J. Wilson GABAergic inhibition in the neostriatum. , 2007, Progress in brain research.

[107]  G. Bernardi,et al.  Functional and ultrastructural analysis of group I mGluR in striatal fast‐spiking interneurons , 2007, The European journal of neuroscience.

[108]  A. Reiner,et al.  Calretinin is largely localized to a unique population of striatal interneurons in rats , 1996, Brain Research.

[109]  Enrico Bracci,et al.  Cholinergic Interneurons Control the Excitatory Input to the Striatum , 2007, The Journal of Neuroscience.

[110]  V. Grutta,et al.  Inhibition of nitric oxide synthase influences the activity of striatal neurons in the rat , 2002, Neuroscience Letters.

[111]  S. J. Martin,et al.  New life in an old idea: The synaptic plasticity and memory hypothesis revisited , 2002, Hippocampus.

[112]  J. Glowinski,et al.  Bidirectional Activity-Dependent Plasticity at Corticostriatal Synapses , 2005, The Journal of Neuroscience.

[113]  鈴木 健雄 Dopamine-dependent synaptic plasticity in the striatal cholinergic interneurons , 2002 .

[114]  J. Bargas,et al.  Cholinergic control of firing pattern and neurotransmission in rat neostriatal projection neurons: role of CaV2.1 and CaV2.2 Ca2+ channels. , 2005, Journal of neurophysiology.

[115]  Peter Redgrave,et al.  Basal Ganglia , 2020, Encyclopedia of Autism Spectrum Disorders.

[116]  Xin Jin,et al.  Start/stop signals emerge in nigrostriatal circuits during sequence learning , 2010, Nature.

[117]  H. Haas,et al.  Long‐term depression of cortico‐striatal synaptic transmission by DHPG depends on endocannabinoid release and nitric oxide synthesis , 2007, The European journal of neuroscience.

[118]  G. Shepherd The Synaptic Organization of the Brain , 1979 .