Inverse optimal control for discrete-time finite-horizon Linear Quadratic Regulators

Abstract In this paper, we consider the inverse optimal control problem for discrete-time Linear Quadratic Regulators (LQR), over finite-time horizons. Given observations of the optimal trajectories, or optimal control inputs, to a linear time-invariant system, the goal is to infer the parameters that define the quadratic cost function. The well-posedness of the inverse optimal control problem is first justified. In the noiseless case, when these observations are exact, we analyze the identifiability of the problem and provide sufficient conditions for uniqueness of the solution. In the noisy case, when the observations are corrupted by additive zero-mean noise, we formulate the problem as an optimization problem and prove that the solution to this problem is statistically consistent. The performance of the proposed method is illustrated through numerical examples.

[1]  Vishal Gupta,et al.  Data-driven estimation in equilibrium using inverse optimization , 2013, Mathematical Programming.

[2]  Jongeun Choi,et al.  Solutions to the Inverse LQR Problem With Application to Biological Systems Analysis , 2015, IEEE Transactions on Control Systems Technology.

[3]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[4]  Michael L. Overton,et al.  Complementarity and nondegeneracy in semidefinite programming , 1997, Math. Program..

[5]  Dana Kulic,et al.  Inverse Optimal Control with Incomplete Observations , 2018, ArXiv.

[6]  A. Jameson,et al.  Inverse Problem of Linear Optimal Control , 1973 .

[7]  Tristan Perez,et al.  Finite-horizon inverse optimal control for discrete-time nonlinear systems , 2018, Autom..

[8]  R. Jennrich Asymptotic Properties of Non-Linear Least Squares Estimators , 1969 .

[9]  T. Fujii,et al.  A new approach to the LQ design from the viewpoint of the inverse regulator problem , 1987 .

[10]  F. Jean,et al.  Why Don't We Move Slower? The Value of Time in the Neural Control of Action , 2016, The Journal of Neuroscience.

[11]  Didier Henrion,et al.  Linear Conic Optimization for Inverse Optimal Control , 2014, SIAM J. Control. Optim..

[12]  Tristan Perez,et al.  Discrete-time inverse optimal control with partial-state information: A soft-optimality approach with constrained state estimation , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[13]  Yurii Nesterov,et al.  Smoothing Technique and its Applications in Semidefinite Optimization , 2004, Math. Program..

[14]  Jean B. Lasserre,et al.  On inverse optimal control via polynomial optimization , 2017, 2017 IEEE 56th Annual Conference on Decision and Control (CDC).

[15]  R. McN. Alexander,et al.  The Gaits of Bipedal and Quadrupedal Animals , 1984 .

[16]  Jean-Paul Laumond,et al.  From human to humanoid locomotion—an inverse optimal control approach , 2010, Auton. Robots.

[17]  Stephen P. Boyd,et al.  Imputing a convex objective function , 2011, 2011 IEEE International Symposium on Intelligent Control.

[18]  Graham C. Goodwin,et al.  Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.

[19]  R. E. Kalman,et al.  When Is a Linear Control System Optimal , 1964 .

[20]  Zuo-Jun Max Shen,et al.  Inverse Optimization with Noisy Data , 2015, Oper. Res..

[21]  B. Anderson,et al.  Optimal control: linear quadratic methods , 1990 .

[22]  Timothy Bretl,et al.  Inverse optimal control for deterministic continuous-time nonlinear systems , 2013, 52nd IEEE Conference on Decision and Control.

[23]  John E. R. Staddon,et al.  Optima for animals , 1982 .

[24]  Johannes P. Schlöder,et al.  Estimating Parameters in Optimal Control Problems , 2012, SIAM J. Sci. Comput..