Multiple Model Adaptive Control

When the plant to control is subject to large variations of its point of operation, or if some of its parameters are uncertain, the corresponding change in local dynamics prevents a single linear controller to yield a good performance, or even to globally stabilize the system. In order to tackle this issue, the approach followed in the present chapter consists of the identification of a bank of linear models that represent the plant dynamics in different regions of operation and/or different parameter ranges. To each of these so called local models a linear controller (named local controller) is associated that is designed such that, when connected to the plant, it yields the desired performance in the operating region/parameter range to which the local model is associated. To prevent instability that stems from fast switching a dwell time condition is imposed, meaning that, when a local controller is connected to the plant, it remains so for at least a minimum time interval. The application of this multiple model adaptive control (MMAC) strategy is illustrated by its experimental application to an air heating fan and a distributed collector solar field.

[1]  Michel Kinnaert,et al.  Conditioning technique, a general anti-windup and bumpless transfer method , 1987, Autom..

[2]  A. Morse Supervisory control of families of linear set-point controllers. 2. Robustness , 1997, IEEE Trans. Autom. Control..

[3]  G. Vinnicombe Frequency domain uncertainty and the graph topology , 1993, IEEE Trans. Autom. Control..

[4]  J. M. Lemos,et al.  MUSMAR based switching control of a solar collector field , 1997, 1997 European Control Conference (ECC).

[5]  A. Vardulakis Linear Multivariable Control: Algebraic Analysis and Synthesis Methods , 1991 .

[6]  Luca Zaccarian,et al.  The I (l2) bumpless transfer problem for linear plants: Its definition and solution , 2005, Autom..

[7]  D.G. Lainiotis,et al.  Partitioning: A unifying framework for adaptive systems, II: Control , 1976, Proceedings of the IEEE.

[8]  A. Stephen Morse,et al.  Control Using Logic-Based Switching , 1997 .

[9]  Thomas S. Brinsmead,et al.  Multiple model adaptive control. Part 2: switching , 2001 .

[10]  A. Morse Supervisory control of families of linear set-point controllers Part I. Exact matching , 1996, IEEE Trans. Autom. Control..

[11]  R. Pickhardt Adaptive control of a solar power plant using a multi-model , 2000 .

[12]  Luca Zaccarian,et al.  A common framework for anti-windup, bumpless transfer and reliable designs , 2002, Autom..

[13]  A. El-Sakkary,et al.  The gap metric: Robustness of stabilization of feedback systems , 1985 .

[14]  Matthew C. Turner,et al.  Linear quadratic bumpless transfer , 2000, Autom..

[15]  J.M. Lemos,et al.  Learning in multiple model adaptive control switch , 2006, IEEE Instrumentation & Measurement Magazine.

[16]  K. Glover,et al.  Robust stabilization of normalized coprime factor plant descriptions with H/sub infinity /-bounded uncertainty , 1989 .

[17]  Manuel Berenguel,et al.  Adaptive generalized predictive control of a distributed collector field , 1994, IEEE Trans. Control. Syst. Technol..

[18]  Michael Athans,et al.  Guaranteed properties of gain scheduled control for linear parameter-varying plants , 1991, Autom..

[19]  Jeff S. Shamma,et al.  Analysis and design of gain scheduled control systems , 1988 .

[20]  Tryphon T. Georgiou,et al.  On the robust stabilizability of uncertain linear time-invariant plants using nonlinear time-varying controllers , 1987, Autom..

[21]  T. Georgiou,et al.  Optimal robustness in the gap metric , 1990 .

[22]  Edoardo Mosca,et al.  Lyapunov-based switching supervisory control of nonlinear uncertain systems , 2002, IEEE Trans. Autom. Control..

[23]  Manuel Berenguel,et al.  Application of a gain scheduling generalized predictive controller to a solar power plant , 1994 .

[24]  Eduardo F. Camacho,et al.  Temperature control of a solar furnace , 1999 .

[25]  David J. N. Limebeer,et al.  Linear Robust Control , 1994 .

[26]  Fuad Kassab,et al.  On a class of switched, robustly stable, adaptive systems , 2001 .

[27]  A. S. Morse,et al.  A Bound for the Disturbance - to - Tracking - Error Gain of a Supervised Set-Point Control System , 1998 .

[28]  Tor Arne Johansen,et al.  Design and analysis of gain-scheduled control using local controller networks , 1997 .

[29]  G. Zames On the metric complexity of casual linear systems: ε -Entropy and ε -Dimension for continuous time , 1979 .

[30]  Wilson J. Rugh,et al.  Analytical Framework for Gain Scheduling , 1990, 1990 American Control Conference.

[31]  Javad Mohammadpour,et al.  Control of linear parameter varying systems with applications , 2012 .

[32]  Michael Athans,et al.  Analysis of gain scheduled control for nonlinear plants , 1990 .

[33]  J. Doyle,et al.  Robust and optimal control , 1995, Proceedings of 35th IEEE Conference on Decision and Control.

[34]  Minyue Fu,et al.  Further results on localization-based switching adaptive control , 2001, Autom..

[35]  Bruce A. Francis,et al.  Feedback Control Theory , 1992 .

[36]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[37]  Gary J. Balas,et al.  Linear, parameter‐varying control and its application to a turbofan engine , 2002 .

[38]  Pierre Apkarian,et al.  Self-scheduled H∞ control of linear parameter-varying systems: a design example , 1995, Autom..

[39]  Tor Arne Johansen,et al.  Gain-scheduled control of a solar power plant , 2000 .

[40]  Fuad Kassab,et al.  Parallel algorithms for adaptive control: Robust stability , 1996 .

[41]  Kumpati S. Narendra,et al.  Adaptive control using multiple models , 1997, IEEE Trans. Autom. Control..

[42]  João M. Lemos,et al.  Predictive adaptive control of plants with online structural changes based on multiple models , 2008 .

[43]  Glenn Vinnicombe The robustness of feedback systems with bounded complexity controllers , 1996, IEEE Trans. Autom. Control..

[44]  B. Anderson,et al.  Multiple model adaptive control. Part 1: Finite controller coverings , 2000 .