Homeostasis and Learning through Spike-Timing Dependent Plasticity

Synaptic plasticity is thought to be the neuronal correlate of learning. Moreover, modification of synapses contributes to the activity-dependent homeostatic maintenance of neurons and neural networks. In this chapter, we review theories of synaptic plasticity and show that both homeostatic control of activity and detection of correlations in the presynaptic input can arise from spike-timing dependent plasticity (STDP). Relations to classical rate-based Hebbian learning are discussed.

[1]  T. Sejnowski,et al.  Storing covariance with nonlinearly interacting neurons , 1977, Journal of mathematical biology.

[2]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[3]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[5]  D. O. Hebb,et al.  The organization of behavior , 1988 .

[6]  Terrence J. Sejnowski,et al.  The Hebb Rule for Synaptic Plasticity: Algorithms and Implementations , 1989 .

[7]  S. Grossberg,et al.  The Adaptive Brain , 1990 .

[8]  Kenneth D. Miller,et al.  The Role of Constraints in Hebbian Learning , 1994, Neural Computation.

[9]  Wulfram Gerstner,et al.  A neuronal learning rule for sub-millisecond temporal coding , 1996, Nature.

[10]  L. F. Abbott,et al.  A Model of Spatial Map Formation in the Hippocampus of the Rat , 1999, Neural Computation.

[11]  K. I. Blum,et al.  Functional significance of long-term potentiation for sequence learning and prediction. , 1996, Cerebral cortex.

[12]  L. Abbott,et al.  Synaptic Depression and Cortical Gain Control , 1997, Science.

[13]  H. Markram,et al.  The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[14]  R. Kempter,et al.  Hebbian learning and spiking neurons , 1999 .

[15]  M. Quirk,et al.  Experience-Dependent Asymmetric Shape of Hippocampal Receptive Fields , 2000, Neuron.

[16]  Davide Badoni,et al.  Spike-Driven Synaptic Plasticity: Theory, Simulation, VLSI Implementation , 2000, Neural Computation.

[17]  Mark C. W. van Rossum,et al.  Stable Hebbian Learning from Spike Timing-Dependent Plasticity , 2000, The Journal of Neuroscience.

[18]  L. Abbott,et al.  Synaptic plasticity: taming the beast , 2000, Nature Neuroscience.

[19]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[20]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[21]  J. Leo van Hemmen,et al.  Modeling Synaptic Plasticity in Conjunction with the Timing of Pre- and Postsynaptic Action Potentials , 2000, Neural Computation.

[22]  Idan Segev,et al.  Synaptic scaling in vitro and in vivo , 2001, Nature Neuroscience.

[23]  Henry Markram,et al.  An Algorithm for Modifying Neurotransmitter Release Probability Based on Pre- and Postsynaptic Spike Timing , 2001, Neural Computation.

[24]  Daniel D. Lee,et al.  Equilibrium properties of temporally asymmetric Hebbian plasticity. , 2000, Physical review letters.

[25]  Wulfram Gerstner,et al.  Intrinsic Stabilization of Output Rates by Spike-Based Hebbian Learning , 2001, Neural Computation.

[26]  Rajesh P. N. Rao,et al.  Spike-Timing-Dependent Hebbian Plasticity as Temporal Difference Learning , 2001, Neural Computation.

[27]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[28]  Wulfram Gerstner,et al.  Spiking Neuron Models , 2002 .

[29]  K. Holthoff,et al.  A problem with Hebb and local spikes , 2002, Trends in Neurosciences.

[30]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[31]  Tomoki Fukai,et al.  A Stochastic Method to Predict the Consequence of Arbitrary Forms of Spike-Timing-Dependent Plasticity , 2003, Neural Computation.

[32]  P. J. Sjöström,et al.  Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors , 2003, Neuron.

[33]  Haim Sompolinsky,et al.  Learning Input Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity , 2003, The Journal of Neuroscience.

[34]  Clifton C. Rumsey,et al.  Equalization of synaptic efficacy by activity- and timing-dependent synaptic plasticity. , 2004, Journal of neurophysiology.

[35]  Wulfram Gerstner,et al.  Learning Navigational Maps Through Potentiation and Modulation of Hippocampal Place Cells , 2004, Journal of Computational Neuroscience.

[36]  Patrick D. Roberts,et al.  Computational Consequences of Temporally Asymmetric Learning Rules: I. Differential Hebbian Learning , 1999, Journal of Computational Neuroscience.

[37]  Patrick D. Roberts,et al.  Computational Consequences of Temporally Asymmetric Learning Rules: II. Sensory Image Cancellation , 2000, Journal of Computational Neuroscience.